Skip to main content

In Vitro Characterization of Intestinal and Hepatic Transporters: MRP2

  • Protocol
  • First Online:
Optimization in Drug Discovery

Abstract

The transporter field has grown extensively over the past decade. Analogous to drug metabolizing enzymes such as the cytochrome P450s, transporters play a major role in defining pharmacokinetic, safety and efficacy profiles of drugs. Multidrug resistance-associated protein 2 (MRP2, ABCC2) is an ATP-dependent efflux pump that belongs to the ATP binding cassette (ABC) superfamily of transporters, and is localized at the apical membrane of polarized cells from a variety of human tissues including enterocytes, hepatocytes and renal proximal tubules. It is highly expressed in liver, intestine and kidney, with lesser expression in other tissues. MRP2 primarily transports organic anions and large bulky conjugated compounds and shares some overlapping substrate specificity with other ABC family members including P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP).

Understanding whether investigational compounds are potential MRP2 substrates or inhibitors during drug discovery and development may potentially help to explain why drug candidates show poor bioavailability or are rapidly cleared by hepatic efflux. This chapter outlines various in vitro techniques that can be used to examine whether compounds are substrates and/or inhibitors of MRP2 (ATPase assays, vesicular transport assays and/or MDCKII-MRP2 overexpressing cells) and assess the role of MRP2 in attenuating intestinal absorption of drugs (wild-type and MRP2 knockdown Caco-2 cells) or in mediating their hepatobiliary excretion (wild-type and MRP2 knockdown human hepatocytes cultured in sandwich configuration). The primary aim of the chapter is to provide a range of assay options. However, the strategy around when/if/why/ or how a specific assay(s) should be used will depend on a number of factors such as physiochemical properties, drug target, overall distribution, etc, and is therefore ultimately left to the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeGorter MK et al (2012) Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol 52:249–273

    Article  PubMed  CAS  Google Scholar 

  2. Jedlitschky G, Hoffmann U, Kroemer HK (2006) Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2(3):351–366

    Article  PubMed  CAS  Google Scholar 

  3. Dallas S, Miller DS, Bendayan R (2006) Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 58(2):140–161

    Article  PubMed  CAS  Google Scholar 

  4. Zimmermann C et al (2005) Mapping of multidrug resistance gene 1 and multidrug resistance-associated protein isoform 1 to 5 mRNA expression along the human intestinal tract. Drug Metab Dispos 33(2):219–224

    Article  PubMed  CAS  Google Scholar 

  5. Keppler D, Konig J (1997) Hepatic canalicular membrane 5: expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. FASEB J 11(7):509–516

    PubMed  CAS  Google Scholar 

  6. Homolya L, Varadi A, Sarkadi B (2003) Multidrug resistance-associated proteins: export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 17(1–4):103–114

    Article  PubMed  CAS  Google Scholar 

  7. Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22(47):7537–7552

    Article  PubMed  CAS  Google Scholar 

  8. Borst P et al (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92(16):1295–1302

    Article  PubMed  CAS  Google Scholar 

  9. Gerk PM et al (2007) Human multidrug resistance protein 2 transports the therapeutic bile salt tauroursodeoxycholate. J Pharmacol Exp Ther 320(2):893–899

    Article  PubMed  CAS  Google Scholar 

  10. Zelcer N et al (2003) Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ATP binding cassette C2). J Biol Chem 278(26):23538–23544

    Article  PubMed  CAS  Google Scholar 

  11. US Food and Drug Administration, US Department of Health and Human Services, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research (CBER) (2012) Guidance for industry: drug interaction studies—study design, data analysis, and implications for dosing and labeling. Silver Spring, MD. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf

  12. European Medicines Agency (2010) Guideline on the investigation of drug interactions. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

  13. Ming X, Knight BM, Thakker DR (2011) Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Mol Pharm 8(5):1677–1686

    Article  PubMed  CAS  Google Scholar 

  14. Dahan A, Sabit H, Amidon GL (2009) Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine. Drug Metab Dispos 37(10):2028–2036

    Article  PubMed  CAS  Google Scholar 

  15. Yoshida K, Maeda K, Sugiyama Y (2013) Hepatic and intestinal drug transporters: prediction of pharmacokinetic effects caused by drug-drug interactions and genetic polymorphisms. Annu Rev Pharmacol Toxicol 53:581–612

    Article  PubMed  CAS  Google Scholar 

  16. Gerk PM, Vore M (2002) Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther 302(2):407–415

    Article  PubMed  CAS  Google Scholar 

  17. Sugie M et al (2004) Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother 48(3):809–814

    Article  PubMed  CAS  Google Scholar 

  18. Giacomini KM et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9(3):215–236

    Article  PubMed  CAS  Google Scholar 

  19. Sarkadi B et al (1992) Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem 267(7):4854–4858

    PubMed  CAS  Google Scholar 

  20. Drueckes P, Schinzel R, Palm D (1995) Photometric microtiter assay of inorganic phosphate in the presence of acid-labile organic phosphates. Anal Biochem 230(1):173–177

    Article  PubMed  CAS  Google Scholar 

  21. Mazur CS et al (2012) Human and rat ABC transporter efflux of bisphenol a and bisphenol a glucuronide: interspecies comparison and implications for pharmacokinetic assessment. Toxicol Sci 128(2):317–325

    Article  PubMed  CAS  Google Scholar 

  22. BD Gentest, ATPase Assay Kit Data Sheet, BD Biosciences, Woburn, MA. http://www.bdj.co.jp/gentest/1f3pro00000vv95q-att/Cat459006-lot05056.pdf

  23. ATPase Assay Protocol, GenoMembrane, Kanagawa, Japan. http://www.google.com/url?sa=t&rct=j&q=genomembrane%20atpase%20protocol&source=web&cd=1&sqi=2&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.genomembrane.com%2FATPase_assay_Ver.6.5.n.pdf&ei=sKc4UeUjg8z2BImNgPAH 4UeUjg8z2BImNgPAH&usg=AFQjCNEV3fbT5XiVZkeS1XLRRcCq5kQybg&bvm=bv.43287494,d.eWU&cad=rja

  24. Glavinas H et al (2008) Utilization of membrane vesicle preparations to study drug-ABC transporter interactions. Expert Opin Drug Metab Toxicol 4(6):721–732

    Article  PubMed  CAS  Google Scholar 

  25. BD Gentest MRP/BCRP Vesicle Assay Kit Data Sheet, BD Biosciences, Woburn, MA. http://www.bdj.co.jp/gentest/1f3pro00000vv95q-att/Cat459010-lot79163.pdf

  26. Karlsson JE et al (2010) High-activity p-glycoprotein, multidrug resistance protein 2, and breast cancer resistance protein membrane vesicles prepared from transiently transfected human embryonic kidney 293-epstein-barr virus nuclear antigen cells. Drug Metab Dispos 38(4):705–714

    Article  PubMed  CAS  Google Scholar 

  27. Glavinas H et al (2007) Passive permeability is a crucial parameter in choosing the right assay to detect the interaction of compounds with ABCB1 (Pgp) and ABCG2 (BCRP). International society for the study of xenobiotics annual meeting (October 9th – 12th), Sendai, Japan (Poster ID # 7808). http://issx.confex.com/issx/intl8/webprogram/Paper7808.html

  28. Heredi-Szabo K et al (2009) Multidrug resistance protein 2-mediated estradiol-17beta-D-glucuronide transport potentiation: in vitro-in vivo correlation and species specificity. Drug Metab Dispos 37(4):794–801

    Article  PubMed  CAS  Google Scholar 

  29. Heredi-Szabo K et al (2008) Characterization of 5(6)-carboxy-2,7-dichlorofluorescein transport by MRP2 and utilization of this substrate as a fluorescent surrogate for LTC4. J Biomol Screen 13(4):295–301

    Article  PubMed  CAS  Google Scholar 

  30. Kidron H et al (2012) Impact of probe compound in MRP2 vesicular transport assays. Eur J Pharm Sci 46(1–2):100–105

    Article  PubMed  CAS  Google Scholar 

  31. Szeremy P et al (2011) Comparison of 3 assay systems using a common probe substrate, calcein AM, for studying P-gp using a selected set of compounds. J Biomol Screen 16(1):112–119

    Article  PubMed  CAS  Google Scholar 

  32. Vesicular Transport Assay Protocol (RI labeled compounds as substrates), GenoMembrane, Kanagawa, Japan. http://www.google.com/url?sa=t&rct=j&q=genomembrane%20vesicular%20protocol&source=web&cd=1&sqi=2&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.genomembrane.com%2FVT_assay_protocol_Ver.7.3_for_RI.pdf&ei=KLc4UcWkG4OC9QSYuIG4Cw&usg=AFQjCNG66ew6EFfqon48ToyfnOb5o-9DzA&bvm=bv.43287494,d.eWU&cad=rja

  33. Vesicular Transport Assay Protocol (Inhibition study using fluorescent substrates) GenoMembrane, Kanagawa, Japan. http://www.google.com/url?sa=t&rct=j&q=genomembrane%20vesicular%20protocol&source=web&cd=2&sqi=2&ved=0CDMQFjAB&url=http%3A%2F%2Fwww.genomembrane.com%2FVT_assay_protocol_Ver.7.3_for_fluorescent_probe.pdf&ei=KLc4UcWkG4OC9QSYuIG4Cw&usg=AFQjCNGO6TcaMJf7_tD6M0GdFRyckT6Y1A&bvm=bv.43287494,d.eWU&cad=rja

  34. Krumpochova P et al (2012) Transportomics: screening for substrates of ABC transporters in body fluids using vesicular transport assays. FASEB J 26(2):738–747

    Article  PubMed  CAS  Google Scholar 

  35. Kato Y et al (2008) Involvement of multidrug resistance-associated protein 2 (Abcc2) in molecular weight-dependent biliary excretion of beta-lactam antibiotics. Drug Metab Dispos 36(6):1088–1096

    Article  PubMed  CAS  Google Scholar 

  36. Yamaguchi K et al (2009) Measurement of the transport activities of bile salt export pump using LC-MS. Anal Sci 25(9):1155–1158

    Article  PubMed  CAS  Google Scholar 

  37. Ming X et al (2009) Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters. Drug Metab Dispos 37(2):424–430

    Article  PubMed  CAS  Google Scholar 

  38. Matsushima S et al (2005) Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 314(3):1059–1067

    Article  PubMed  CAS  Google Scholar 

  39. Cho MJ et al (1989) The Madin Darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier. Pharm Res 6(1):71–77

    Article  PubMed  CAS  Google Scholar 

  40. Agarwal S, Pal D, Mitra AK (2007) Both P-gp and MRP2 mediate transport of Lopinavir, a protease inhibitor. Int J Pharm 339(1–2):139–147

    Article  PubMed  CAS  Google Scholar 

  41. Evers R et al (2000) Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer 83(3):375–383

    Article  PubMed  CAS  Google Scholar 

  42. MDCK.2, ATCC, Manassas, VA, USA. http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx?ATCCNum=CRL-2936&Template=cellBiology

  43. Ward PD et al (2002) Phospholipase C-gamma modulates epithelial tight junction permeability through hyperphosphorylation of tight junction proteins. J Biol Chem 277(38):35760–35765

    Article  PubMed  CAS  Google Scholar 

  44. Ward PD, Tippin TK, Thakker DR (2000) Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technol Today 3(10):346–358

    Article  PubMed  CAS  Google Scholar 

  45. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96(3):736–749

    PubMed  CAS  Google Scholar 

  46. Gan LSL, Thakker DR (1997) Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv Drug Deliv Rev 23(1):77–98

    Article  CAS  Google Scholar 

  47. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55(1):3–29

    Article  PubMed  CAS  Google Scholar 

  48. Hilgendorf C et al (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35(8):1333–1340

    Article  PubMed  CAS  Google Scholar 

  49. Ming X, Thakker DR (2010) Role of basolateral efflux transporter MRP4 in the intestinal absorption of the antiviral drug adefovir dipivoxil. Biochem Pharmacol 79(3):455–462

    Article  PubMed  CAS  Google Scholar 

  50. Li J et al (2011) Use of transporter knockdown caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos 39(7):1196–1202

    Article  PubMed  CAS  Google Scholar 

  51. Caco-2, ATCC, Manassas, VA, USA. http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx?ATCCNum=htb-37&Template=cellBiology

  52. Swift B, Pfeifer ND, Brouwer KL (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42(3):446–471

    Article  PubMed  CAS  Google Scholar 

  53. Liu X et al (1999) Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am J Physiol 277(1 pt 1):G12–G21

    PubMed  CAS  Google Scholar 

  54. Liu X et al (1999) Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther 289(3):1592–1599

    PubMed  CAS  Google Scholar 

  55. LeCluyse EL, Brouwer KL, Liu X (2004) Method of screening candidate compounds for susceptibility to biliary excretion, US 6,780,580 B2, 24 Aug 2004. The University of North Carolina at Chapel Hill, Chapel Hill, NC

    Google Scholar 

  56. LeCluyse EL, Kim RB, Liu X (2009) Method of screening candidate compounds for susceptibility to biliary excretion by endogenous transport systems, US 7,604,934 B2, 20 Oct 2009. The University of North Carolina at Chapel Hill, Chapel Hill, NC

    Google Scholar 

  57. Tian X et al (2004) Modulation of multidrug resistance-associated protein 2 (Mrp2) and Mrp3 expression and function with small interfering RNA in sandwich-cultured rat hepatocytes. Mol Pharmacol 66(4):1004–1010

    Article  PubMed  CAS  Google Scholar 

  58. Liao M et al (2010) Inhibition of hepatic organic anion-transporting polypeptide by RNA interference in sandwich-cultured human hepatocytes: an in vitro model to assess transporter-mediated drug-drug interactions. Drug Metab Dispos 38(9):1612–1622

    Article  PubMed  CAS  Google Scholar 

  59. Yue W, Abe K, Brouwer KL (2009) Knocking down breast cancer resistance protein (Bcrp) by adenoviral vector-mediated RNA interference (RNAi) in sandwich-cultured rat hepatocytes: a novel tool to assess the contribution of Bcrp to drug biliary excretion. Mol Pharm 6(1):134–143

    Article  PubMed  CAS  Google Scholar 

  60. Tian X, Zhang P, Brouwer KL (2009) Method of screening candidate compounds for susceptibility to biliary excretion, US 7,601,494 B2, 13 Oct 2009. The University of North Carolina at Chapel Hill, Chapel Hill, NC

    Google Scholar 

  61. Swift B, Yue W, Brouwer KL (2010) Evaluation of (99m)technetium-mebrofenin and (99m)technetium-sestamibi as specific probes for hepatic transport protein function in rat and human hepatocytes. Pharm Res 27(9):1987–1998

    Article  PubMed  CAS  Google Scholar 

  62. Liu X et al (1999) Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab Dispos 27(6):637–644

    PubMed  CAS  Google Scholar 

  63. Abe K, Bridges AS, Brouwer KL (2009) Use of sandwich-cultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Drug Metab Dispos 37(3):447–452

    Article  PubMed  CAS  Google Scholar 

  64. Ghibellini G et al (2007) In vitro-in vivo correlation of hepatobiliary drug clearance in humans. Clin Pharmacol Ther 81(3):406–413

    Article  PubMed  CAS  Google Scholar 

  65. Bi YA, Kazolias D, Duignan DB (2006) Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos 34(9):1658–1665

    Article  PubMed  CAS  Google Scholar 

  66. Kimoto E et al (2011) Characterization of digoxin uptake in sandwich-cultured human hepatocytes. Drug Metab Dispos 39(1):47–53

    Article  PubMed  CAS  Google Scholar 

  67. Kotani N et al (2011) Culture period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes. Drug Metab Dispos 39(9):1503–1510

    Article  PubMed  CAS  Google Scholar 

  68. Wolf KK et al (2008) Effect of albumin on the biliary clearance of compounds in sandwich-cultured rat hepatocytes. Drug Metab Dispos 36(10):2086–2092

    Article  PubMed  CAS  Google Scholar 

  69. Polli JW et al (2001) Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 299(2):620–628

    PubMed  CAS  Google Scholar 

  70. Pedersen JM et al (2008) Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2). J Med Chem 51(11):3275–3287

    Article  PubMed  CAS  Google Scholar 

  71. Bodo A et al (2003) Differential modulation of the human liver conjugate transporters MRP2 and MRP3 by bile acids and organic anions. J Biol Chem 278(26):23529–23537

    Article  PubMed  CAS  Google Scholar 

  72. Sun H, Pang KS (2008) Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study. Drug Metab Dispos 36(1):102–123

    Article  PubMed  CAS  Google Scholar 

  73. Troutman MD, Thakker DR (2003) Rhodamine 123 requires carrier-mediated influx for its activity as a P-glycoprotein substrate in Caco-2 cells. Pharm Res 20(8):1192–1199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kim L. Brouwer, Ruth S Everett, Maarten Huisman, and Ian Templeton for helpful comments made during the preparation of the manuscript.

The views expressed here are solely those of the authors and do not reflect the opinions of Janssen Research & Development, LLC.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alluri, R.V., Ward, P., Kunta, J.R., Ferslew, B.C., Thakker, D.R., Dallas, S. (2014). In Vitro Characterization of Intestinal and Hepatic Transporters: MRP2. In: Caldwell, G., Yan, Z. (eds) Optimization in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-742-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-742-6_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-741-9

  • Online ISBN: 978-1-62703-742-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics