Skip to main content

Identification of Staphylococcus epidermidis in the Clinical Microbiology Laboratory by Molecular Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1106))

Abstract

Biochemical assays for the phenotypic identification of coagulase-negative staphylococci in the clinical microbiology laboratory have been well described in previous publications (Becker and Von Eiff Manual of Clinical Microbiology, ASM Press, Washington, pp. 308–330, 2011; Kloos and Wolfshohl J Clin Microbiol 16:509–516, 1982). This discussion focuses on identification of Staphylococcus epidermidis through molecular and proteomic methods. Molecular assays have been shown to be more discriminatory between the coagulase-negative staphylococcal species than are phenotypic assays (Zadoks and Watts Vet Microbiol 134:20–28, 2009; Sheraba et al. BMC Res Notes 3:278, 2010; Patteet et al. Eur J Clin Microbiol Infect Dis 31:747–751, 2012). The molecular and proteomic methods that have shown the greatest utilization potential within the clinical laboratory are as follows: PCR amplification and sequencing of discriminatory genes, real-time polymerase chain reaction with species-specific probes in conjunction with a melt-curve analysis, fluorescence in situ hybridization, and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zadoks RN, Watts JL (2009) Species identification of coagulase-negative staphylococci: genotyping is superior to phenotyping. Vet Microbiol 134:20–28

    Article  PubMed  CAS  Google Scholar 

  2. Sheraba NS, Yassin AS, Amin MA (2010) High-throughput molecular identification of Staphylococcus spp. isolated from a clean room facility in an environmental monitoring program. BMC Res Notes 3:278

    Article  PubMed  Google Scholar 

  3. Patteet L, Goossens H, Ieven M (2012) Validation of the MicroScan-96 for the species identification and methicillin susceptibility testing of clinical significant coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 31:747–751

    Article  PubMed  CAS  Google Scholar 

  4. Renneberg J, Rieneck K, Gutschik E (1995) Evaluation of Staph ID 32 system and Staph-Zym system for identification of coagulase-negative staphylococci. J Clin Microbiol 33:1150–1153

    PubMed  CAS  Google Scholar 

  5. Becker K, Von Eiff C (2011) Staphylococcus, Micrococcus, and other catalase-positive cocci. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (eds) Manual of Clinical Microbiology, 10th ed. ASM Press, Washington, DC, pp 308–330

    Google Scholar 

  6. Kloos WE, Wolfshohl JF (1982) Identification of Staphylococcus species with the API STAPH-IDENT system. J Clin Microbiol 16:509–516

    PubMed  CAS  Google Scholar 

  7. Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952

    PubMed  CAS  Google Scholar 

  8. Carpaij N, Willems RJ, Bonten MJ et al (2011) Comparison of the identification of coagulase-negative staphylococci by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and tuf sequencing. Eur J Clin Microbiol Infect Dis 30:1169–1172

    Article  PubMed  CAS  Google Scholar 

  9. Ghebremedhin B, Layer F, Konig W et al (2008) Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 46:1019–1025

    Article  PubMed  CAS  Google Scholar 

  10. Kwok AY, Chow AW (2003) Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. Int J Syst Evol Microbiol 53:87–92

    Article  PubMed  CAS  Google Scholar 

  11. Becker K, Harmsen D, Mellmann A et al (2004) Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J Clin Microbiol 42:4988–4995

    Article  PubMed  CAS  Google Scholar 

  12. Bergeron M, Dauwalder O, Gouy M et al (2011) Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 30:343–354

    Article  PubMed  CAS  Google Scholar 

  13. Couto I, Pereira S, Miragaia M et al (2001) Identification of clinical staphylococcal isolates from humans by internal transcribed spacer PCR. J Clin Microbiol 39:3099–3103

    Article  PubMed  CAS  Google Scholar 

  14. Edwards KJ, Kaufmann ME, Saunders NA (2001) Rapid and accurate identification of coagulase-negative staphylococci by real-time PCR. J Clin Microbiol 39:3047–3051

    Article  PubMed  CAS  Google Scholar 

  15. Heikens E, Fleer A, Paauw A et al (2005) Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 43:2286–2290

    Article  PubMed  CAS  Google Scholar 

  16. Maes N, De Gheldre Y, De Ryck R et al (1997) Rapid and accurate identification of Staphylococcus species by tRNA intergenic spacer length polymorphism analysis. J Clin Microbiol 35:2477–2481

    PubMed  CAS  Google Scholar 

  17. Martineau F, Picard FJ, Ke D et al (2001) Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol 39:2541–2547

    Article  PubMed  CAS  Google Scholar 

  18. Martineau F, Picard FJ, Roy PH et al (1998) Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J Clin Microbiol 36:618–623

    PubMed  CAS  Google Scholar 

  19. Mellmann A, Becker K, von Eiff C et al (2006) Sequencing and staphylococci identification. Emerg Infect Dis 12:333–336

    Article  PubMed  CAS  Google Scholar 

  20. Mendoza M, Meugnier H, Bes M et al (1998) Identification of Staphylococcus species by 16S-23S rDNA intergenic spacer PCR analysis. Int J Syst Bacteriol 48:1049–1055

    Article  PubMed  CAS  Google Scholar 

  21. Poyart C, Quesne G, Boumaila C et al (2001) Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 39:4296–4301

    Article  PubMed  CAS  Google Scholar 

  22. Shah MM, Iihara H, Noda M et al (2007) dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int J Syst Evol Microbiol 57:25–30

    Article  PubMed  CAS  Google Scholar 

  23. Skow A, Mangold KA, Tajuddin M et al (2005) Species-level identification of staphylococcal isolates by real-time PCR and melt curve analysis. J Clin Microbiol 43:2876–2880

    Article  PubMed  CAS  Google Scholar 

  24. Welsh J, McClelland M (1992) PCR-amplified length polymorphisms in tRNA intergenic spacers for categorizing staphylococci. Mol Microbiol 6:1673–1680

    Article  PubMed  CAS  Google Scholar 

  25. Yugueros J, Temprano A, Berzal B et al (2000) Glyceraldehyde-3-phosphate dehydrogenase-encoding gene as a useful taxonomic tool for Staphylococcus spp. J Clin Microbiol 38:4351–4355

    PubMed  CAS  Google Scholar 

  26. Yugueros J, Temprano A, Sanchez M et al (2001) Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism of gap gene. J Clin Microbiol 39:3693–3695

    Article  PubMed  CAS  Google Scholar 

  27. Kilic A, Basustaoglu AC (2011) Double triplex real-time PCR assay for simultaneous detection of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus haemolyticus and determination of their methicillin resistance directly from positive blood culture bottles. Res Microbiol 162:1060–1066

    Article  PubMed  CAS  Google Scholar 

  28. Kilic A, Muldrew KL, Tang YW et al (2010) Triplex real-time polymerase chain reaction assay for simultaneous detection of Staphylococcus aureus and coagulase-negative staphylococci and determination of methicillin resistance directly from positive blood culture bottles. Diagn Microbiol Infect Dis 66:349–355

    Article  PubMed  CAS  Google Scholar 

  29. Kosters K, Reischl U, Schmetz J et al (2002) Real-time LightCycler PCR for detection and discrimination of Bordetella pertussis and Bordetella parapertussis. J Clin Microbiol 40:1719–1722

    Article  PubMed  CAS  Google Scholar 

  30. Stender H, Lund K, Petersen KH et al (1999) Fluorescence In situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous Mycobacterium species in smears of Mycobacterium cultures. J Clin Microbiol 37:2760–2765

    PubMed  CAS  Google Scholar 

  31. Zakrzewska-Czerwinska J, Gaszewska-Mastalarz A, Pulverer G et al (1992) Identification of Staphylococcus epidermidis using a 16S rRNA-directed oligonucleotide probe. FEMS Microbiol Lett 79:51–58

    Article  PubMed  CAS  Google Scholar 

  32. Carbonnelle E, Beretti JL, Cottyn S et al (2007) Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 45:2156–2161

    Article  PubMed  CAS  Google Scholar 

  33. Rajakaruna L, Hallas G, Molenaar L et al (2009) High throughput identification of clinical isolates of Staphylococcus aureus using MALDI-TOF-MS of intact cells. Infect Genet Evol 9:507–513

    Article  PubMed  CAS  Google Scholar 

  34. Seng P, Drancourt M, Gouriet F et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  PubMed  CAS  Google Scholar 

  35. Cherkaoui A, Hibbs J, Emonet S et al (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Roberts, A.L. (2014). Identification of Staphylococcus epidermidis in the Clinical Microbiology Laboratory by Molecular Methods. In: Fey, P. (eds) Staphylococcus Epidermidis. Methods in Molecular Biology, vol 1106. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-736-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-736-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-735-8

  • Online ISBN: 978-1-62703-736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics