Skip to main content

Staphylococcus epidermidis Pathogenesis

  • Protocol
  • First Online:
Staphylococcus Epidermidis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1106))

Abstract

Staphylococcus epidermidis is the most frequently encountered member of the coagulase-negative staphylococci on human epithelial surfaces. It has emerged as an important nosocomial pathogen, especially in infections of indwelling medical devices. The mechanisms that S. epidermidis uses to survive during infection are in general of a passive nature, reflecting their possible origin in the commensal life of this bacterium. Most importantly, S. epidermidis excels in forming biofilms, sticky agglomerations that inhibit major host defense mechanisms. Furthermore, S. epidermidis produces a series of protective surface polymers and exoenzymes. Moreover, S. epidermidis has the capacity to secrete strongly cytolytic members of the phenol-soluble modulin (PSM) family, but PSMs in S. epidermidis overall appear to participate primarily in biofilm development. Finally, there is evidence for a virulence gene reservoir function of S. epidermidis, as it appears to have transferred important immune evasion and antibiotic resistance factors to Staphylococcus aureus. Conversely, S. epidermidis also has a beneficial role in balancing the microflora on human epithelial surfaces by controlling outgrowth of harmful bacteria such as in particular S. aureus. Recent research yielded detailed insight into key S. epidermidis virulence determinants and their regulation, in particular as far as biofilm formation is concerned, but we still have a serious lack of understanding of the in vivo relevance of many pathogenesis mechanisms and the factors that govern the commensal life of S. epidermidis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers KL, Fey PD, Rupp ME (2009) Coagulase-negative staphylococcal infections. Infect Dis Clin North Am 23:73–98

    Article  PubMed  Google Scholar 

  2. Vuong C, Otto M (2002) Staphylococcus epidermidis infections. Microbes Infect 4:481–489

    Article  PubMed  Google Scholar 

  3. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  PubMed  CAS  Google Scholar 

  4. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    Article  PubMed  CAS  Google Scholar 

  5. Cheung GY, Rigby K, Wang R et al (2010) Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Pathog 6:e1001133

    Article  PubMed  CAS  Google Scholar 

  6. Mehlin C, Headley CM, Klebanoff SJ (1999) An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J Exp Med 189:907–918

    Article  PubMed  CAS  Google Scholar 

  7. Otto M (2013) Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: Staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays 35:4–11

    Article  PubMed  CAS  Google Scholar 

  8. Iwase T, Uehara Y, Shinji H et al (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349

    Article  PubMed  CAS  Google Scholar 

  9. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  10. Heilmann C, Hussain M, Peters G et al (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024

    Article  PubMed  CAS  Google Scholar 

  11. Holland LM, Conlon B, O’Gara JP (2011) Mutation of tagO reveals an essential role for wall teichoic acids in Staphylococcus epidermidis biofilm development. Microbiology 157:408–418

    Article  PubMed  CAS  Google Scholar 

  12. Christner M, Heinze C, Busch M et al (2012) sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis-dependent release of eDNA. Mol Microbiol 86:394–410

    Article  PubMed  CAS  Google Scholar 

  13. Gill SR, Fouts DE, Archer GL et al (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438

    Article  PubMed  CAS  Google Scholar 

  14. Bowden MG, Chen W, Singvall J et al (2005) Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology 151:1453–1464

    Article  PubMed  CAS  Google Scholar 

  15. Patti JM, Allen BL, McGavin MJ et al (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617

    Article  PubMed  CAS  Google Scholar 

  16. Mazmanian SK, Liu G, Ton-That H et al (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763

    Article  PubMed  CAS  Google Scholar 

  17. McCrea KW, Hartford O, Davis S et al (2000) The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology 146:1535–1546

    PubMed  CAS  Google Scholar 

  18. Davis SL, Gurusiddappa S, McCrea KW et al (2001) SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bbeta chain. J Biol Chem 276:27799–27805

    Article  PubMed  CAS  Google Scholar 

  19. Ponnuraj K, Bowden MG, Davis S et al (2003) A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115:217–228

    Article  PubMed  CAS  Google Scholar 

  20. Hussain M, Herrmann M, von Eiff C et al (1997) A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65:519–524

    PubMed  CAS  Google Scholar 

  21. Banner MA, Cunniffe JG, Macintosh RL et al (2007) Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J Bacteriol 189:2793–2804

    Article  PubMed  CAS  Google Scholar 

  22. Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB (2008) A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A 105:19456–19461

    Article  PubMed  CAS  Google Scholar 

  23. Corrigan RM, Rigby D, Handley P et al (2007) The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153:2435–2446

    Article  PubMed  CAS  Google Scholar 

  24. Macintosh RL, Brittan JL, Bhattacharya R et al (2009) The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J Bacteriol 191:7007–7016

    Article  PubMed  CAS  Google Scholar 

  25. Rohde H, Burdelski C, Bartscht K et al (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895

    Article  PubMed  CAS  Google Scholar 

  26. Arrecubieta C, Lee MH, Macey A et al (2007) SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. J Biol Chem 282:18767–18776

    Article  PubMed  CAS  Google Scholar 

  27. Arrecubieta C, Toba FA, von Bayern M et al (2009) SdrF, a Staphylococcus epidermidis surface protein, contributes to the initiation of ventricular assist device driveline-related infections. PLoS Pathog 5:e1000411

    Article  PubMed  CAS  Google Scholar 

  28. Soderquist B, Andersson M, Nilsson M et al (2009) Staphylococcus epidermidis surface protein I (SesI): a marker of the invasive capacity of S. epidermidis? J Med Microbiol 58:1395–1397

    Article  PubMed  CAS  Google Scholar 

  29. Li M, Du X, Villaruz AE et al (2012) MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med 18:816–819

    Article  PubMed  CAS  Google Scholar 

  30. Heilmann C (2011) Adhesion mechanisms of staphylococci. Adv Exp Med Biol 715:105–123

    Article  PubMed  CAS  Google Scholar 

  31. Heilmann C, Thumm G, Chhatwal GS et al (2003) Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 149:2769–2778

    Article  PubMed  CAS  Google Scholar 

  32. Christner M, Franke GC, Schommer NN et al (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75:187–207

    Article  PubMed  CAS  Google Scholar 

  33. Bowden MG, Visai L, Longshaw CM et al (2002) Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem 277:43017–43023

    Article  PubMed  CAS  Google Scholar 

  34. Mack D, Fischer W, Krokotsch A et al (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    PubMed  CAS  Google Scholar 

  35. Heilmann C, Schweitzer O, Gerke C et al (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091

    Article  PubMed  CAS  Google Scholar 

  36. Gerke C, Kraft A, Sussmuth R et al (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273:18586–18593

    Article  PubMed  CAS  Google Scholar 

  37. Vuong C, Kocianova S, Voyich JM et al (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279:54881–54886

    Article  PubMed  CAS  Google Scholar 

  38. Li H, Xu L, Wang J et al (2005) Conversion of Staphylococcus epidermidis strains from commensal to invasive by expression of the ica locus encoding production of biofilm exopolysaccharide. Infect Immun 73:3188–3191

    Article  PubMed  CAS  Google Scholar 

  39. Galdbart JO, Allignet J, Tung HS et al (2000) Screening for Staphylococcus epidermidis markers discriminating between skin-flora strains and those responsible for infections of joint prostheses. J Infect Dis 182:351–355

    Article  PubMed  CAS  Google Scholar 

  40. Rohde H, Kalitzky M, Kroger N et al (2004) Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J Clin Microbiol 42:5614–5619

    Article  PubMed  CAS  Google Scholar 

  41. Rohde H, Burandt EC, Siemssen N et al (2007) Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720

    Article  PubMed  CAS  Google Scholar 

  42. Kogan G, Sadovskaya I, Chaignon P et al (2006) Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett 255:11–16

    Article  PubMed  CAS  Google Scholar 

  43. Schommer NN, Christner M, Hentschke M et al (2011) Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect Immun 79:2267–2276

    Article  PubMed  CAS  Google Scholar 

  44. Wang R, Khan BA, Cheung GY et al (2011) Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest 121:238–248

    Article  PubMed  CAS  Google Scholar 

  45. Periasamy S, Joo HS, Duong AC et al (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A 109:1281–1286

    Article  PubMed  CAS  Google Scholar 

  46. Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64:175–188

    Article  PubMed  CAS  Google Scholar 

  47. Kiedrowski MR, Kavanaugh JS, Malone CL et al (2011) Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS One 6:e26714

    Article  PubMed  CAS  Google Scholar 

  48. Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052

    Article  PubMed  CAS  Google Scholar 

  49. Whitchurch CB, Tolker-Nielsen T et al (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  PubMed  CAS  Google Scholar 

  50. Rogers DE, Tompsett R (1952) The survival of staphylococci within human leukocytes. J Exp Med 95:209–230

    Article  PubMed  CAS  Google Scholar 

  51. Wang R, Braughton KR, Kretschmer D et al (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514

    Article  PubMed  CAS  Google Scholar 

  52. Yao Y, Sturdevant DE, Otto M (2005) Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J Infect Dis 191:289–298

    Article  PubMed  CAS  Google Scholar 

  53. Cerca N, Jefferson KK, Oliveira R et al (2006) Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun 74:4849–4855

    Article  PubMed  CAS  Google Scholar 

  54. Vuong C, Voyich JM, Fischer ER et al (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    Article  PubMed  CAS  Google Scholar 

  55. Kocianova S, Vuong C, Yao Y et al (2005) Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 115:688–694

    PubMed  CAS  Google Scholar 

  56. Hanby WE, Rydon HN (1946) The capsular substance of Bacillus anthracis. Biochemistry 40:297–307

    CAS  Google Scholar 

  57. Lai Y, Villaruz AE, Li M, Cha DJ et al (2007) The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol 63:497–506

    Article  PubMed  CAS  Google Scholar 

  58. Li M, Lai Y, Villaruz AE et al (2007) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci U S A 104:9469–9474

    Article  PubMed  CAS  Google Scholar 

  59. Otto M (2004) Virulence factors of the coagulase-negative staphylococci. Front Biosci 9:841–863

    Article  PubMed  CAS  Google Scholar 

  60. Madhusoodanan J, Seo KS, Remortel B et al (2011) An enterotoxin-bearing pathogenicity island in Staphylococcus epidermidis. J Bacteriol 193:1854–1862

    Article  PubMed  CAS  Google Scholar 

  61. Dubin G, Chmiel D, Mak P et al (2001) Molecular cloning and biochemical characterisation of proteases from Staphylococcus epidermidis. Biol Chem 382:1575–1582

    Article  PubMed  CAS  Google Scholar 

  62. Vuong C, Gotz F, Otto M (2000) Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect Immun 68:1048–1053

    Article  PubMed  CAS  Google Scholar 

  63. Farrell AM, Foster TJ, Holland KT (1993) Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J Gen Microbiol 139:267–277

    Article  PubMed  CAS  Google Scholar 

  64. Longshaw CM, Farrell AM, Wright JD et al (2000) Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: comparison of sequence with those of other staphylococcal lipases. Microbiology 146:1419–1427

    PubMed  CAS  Google Scholar 

  65. Lindsay JA, Riley TV, Mee BJ (1994) Production of siderophore by coagulase-negative staphylococci and its relation to virulence. Eur J Clin Microbiol Infect Dis 13:1063–1066

    Article  PubMed  CAS  Google Scholar 

  66. Chamberlain NR, Brueggemann SA (1997) Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis. J Med Microbiol 46:693–697

    Article  PubMed  CAS  Google Scholar 

  67. Li M, Villaruz AE, Vadyvaloo V et al (2008) AI-2-dependent gene regulation in Staphylococcus epidermidis. BMC Microbiol 8:4

    Article  PubMed  CAS  Google Scholar 

  68. Xu L, Li H, Vuong C et al (2006) Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 74:488–496

    Article  PubMed  CAS  Google Scholar 

  69. Handke LD, Slater SR, Conlon KM et al (2007) SigmaB and SarA independently regulate polysaccharide intercellular adhesin production in Staphylococcus epidermidis. Can J Microbiol 53:82–91

    Article  PubMed  CAS  Google Scholar 

  70. Kies S, Otto M, Vuong C et al (2001) Identification of the sigB operon in Staphylococcus epidermidis: construction and characterization of a sigB deletion mutant. Infect Immun 69:7933–7936

    Article  PubMed  CAS  Google Scholar 

  71. Knobloch JK, Jager S, Horstkotte MA et al (2004) RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor sigmaB by repression of the negative regulator gene icaR. Infect Immun 72:3838–3848

    Article  PubMed  CAS  Google Scholar 

  72. Wang L, Li M, Dong D et al (2008) SarZ is a key regulator of biofilm formation and virulence in Staphylococcus epidermidis. J Infect Dis 197:1254–1262

    Article  PubMed  CAS  Google Scholar 

  73. Conlon KM, Humphreys H, O’Gara JP (2002) Regulation of icaR gene expression in Staphylococcus epidermidis. FEMS Microbiol Lett 216:171–177

    Article  PubMed  CAS  Google Scholar 

  74. Conlon KM, Humphreys H, O’Gara JP (2002) icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184:4400–4408

    Article  PubMed  CAS  Google Scholar 

  75. Knobloch JK, Horstkotte MA, Rohde H et al (2002) Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J Antimicrob Chemother 49:683–687

    Article  PubMed  CAS  Google Scholar 

  76. Vandecasteele SJ, Peetermans WE, Merckx R et al (2003) Expression of biofilm-associated genes in Staphylococcus epidermidis during in vitro and in vivo foreign body infections. J Infect Dis 188:730–737

    Article  PubMed  CAS  Google Scholar 

  77. Vuong C, Gerke C, Somerville GA et al (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188:706–718

    Article  PubMed  CAS  Google Scholar 

  78. Vuong C, Durr M, Carmody AB et al (2004) Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol 6:753–759

    Article  PubMed  CAS  Google Scholar 

  79. Vuong C, Kocianova S, Yao Y et al (2004) Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis 190:1498–1505

    Article  PubMed  Google Scholar 

  80. Yao Y, Vuong C, Kocianova S et al (2006) characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J Infect Dis 193:841–848

    Article  PubMed  Google Scholar 

  81. Shopsin B, Eaton C, Wasserman GA et al (2010) Mutations in agr do not persist in natural populations of methicillin-resistant Staphylococcus aureus. J Infect Dis 202:1593–1599

    Article  PubMed  CAS  Google Scholar 

  82. Joo HS, Otto M (2012) Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 19:1503–1513

    Article  PubMed  CAS  Google Scholar 

  83. Rupp ME, Ulphani JS, Fey PD et al (1999) Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 67:2627–2632

    PubMed  CAS  Google Scholar 

  84. Rupp ME, Ulphani JS, Fey PD et al (1999) Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun 67:2656–2659

    PubMed  CAS  Google Scholar 

  85. Rupp ME, Fey PD, Heilmann C et al (2001) Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 183:1038–1042

    Article  PubMed  CAS  Google Scholar 

  86. Begun J, Gaiani JM, Rohde H et al (2007) Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS Pathog 3:e57

    Article  PubMed  CAS  Google Scholar 

  87. Liu Q, Fan J, Niu C et al (2011) The eukaryotic-type serine/threonine protein kinase Stk is required for biofilm formation and virulence in Staphylococcus epidermidis. PLoS ONE 6:e25380

    Article  PubMed  CAS  Google Scholar 

  88. Wang C, Fan J, Niu C et al (2010) Role of spx in biofilm formation of Staphylococcus epidermidis. FEMS Immunol Med Microbiol 59:52–160

    Article  CAS  Google Scholar 

  89. Wang X, Niu C, Sun G et al (2011) ygs is a novel gene that influences biofilm formation and the general stress response of Staphylococcus epidermidis. Infect Immun 79:1007–1015

    Article  PubMed  CAS  Google Scholar 

  90. Otto M (2009) Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol 7:555–567

    Article  PubMed  CAS  Google Scholar 

  91. Gu J, Li H, Li M et al (2005) Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J Hosp Infect 61:342–348

    Article  PubMed  CAS  Google Scholar 

  92. Kozitskaya S, Cho SH, Dietrich K et al (2004) The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun 72:1210–1215

    Article  PubMed  CAS  Google Scholar 

  93. Schoenfelder SM, Lange C, Eckart M et al (2010) Success through diversity—how Staphylococcus epidermidis establishes as a nosocomial pathogen. Int J Med Microbiol 300:380–386

    Article  PubMed  Google Scholar 

  94. Ziebuhr W, Krimmer V, Rachid S et al (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32:345–356

    Article  PubMed  CAS  Google Scholar 

  95. Periasamy S, Chatterjee SS, Cheung GY et al (2012) Phenol-soluble modulins in staphylococci: What are they originally for? Commun Integr Biol 5:275–277

    Article  PubMed  CAS  Google Scholar 

  96. Biswas R, Voggu L, Simon UK et al (2006) Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett 259:260–268

    Article  PubMed  CAS  Google Scholar 

  97. Rogers KL, Rupp ME, Fey PD (2008) The presence of icaADBC is detrimental to the colonization of human skin by Staphylococcus epidermidis. Appl Environ Microbiol 74:6155–6157

    Article  PubMed  CAS  Google Scholar 

  98. Otto M, Sussmuth R, Vuong C et al (1999) Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett 450:257–262

    Article  PubMed  CAS  Google Scholar 

  99. Krismer B, Peschel A (2011) Does Staphylococcus aureus nasal colonization involve biofilm formation? Future Microbiol 6:489–493

    Article  PubMed  Google Scholar 

  100. von Eiff C, Becker K, Machka K et al (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 344:11–16

    Article  Google Scholar 

  101. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  PubMed  CAS  Google Scholar 

  102. Daum RS, Ito T, Hiramatsu K et al (2002) A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. J Infect Dis 186:1344–1347

    Article  PubMed  CAS  Google Scholar 

  103. Diep BA, Gill SR, Chang RF et al (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739

    Article  PubMed  CAS  Google Scholar 

  104. Joshi GS, Spontak JS, Klapper DG et al (2011) Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol Microbiol 82:9–20

    Article  PubMed  CAS  Google Scholar 

  105. Holden MT, Lindsay JA, Corton C et al (2010) Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J Bacteriol 192:888–892

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Otto, M. (2014). Staphylococcus epidermidis Pathogenesis. In: Fey, P. (eds) Staphylococcus Epidermidis. Methods in Molecular Biology, vol 1106. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-736-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-736-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-735-8

  • Online ISBN: 978-1-62703-736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics