Skip to main content

Use of Electroporation and Conjugative Mobilization for Genetic Manipulation of Staphylococcus epidermidis

  • Protocol
  • First Online:
Staphylococcus Epidermidis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1106))

Abstract

To perform mechanistic studies on the biology of bacteria including metabolism, physiology, and pathogenesis, it is essential to possess the tools required for genetic manipulation. Introduction of plasmid DNA into Staphylococcus epidermidis for subsequent genetic manipulation, including allelic replacement and complementation experiments, is typically performed by either electroporation or conjugative mobilization. Herein, standard protocols and tips for the transfer of plasmid DNA to S. epidermidis by these two methods are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27:113–159

    Article  CAS  Google Scholar 

  2. Lindberg M, Sjostrom J-E, Johansson T (1972) Transformation of chromosomal and plasmid characters in Staphylococcus aureus. J Bacteriol 109:844–847

    PubMed  CAS  Google Scholar 

  3. Nomura H, Udou T, Yoshida K et al (1971) Induction of hemolysin synthesis by transformation in Staphylococcus aureus. J Bacteriol 105:673–675

    PubMed  CAS  Google Scholar 

  4. Thompson NE, Pattee PA (1977) Transformation in Staphylococcus aureus: role of bacteriophage and incidence of competence among strains. J Bacteriol 129:778–788

    PubMed  CAS  Google Scholar 

  5. Thompson NE, Pattee PA (1981) Genetic transformation in Staphylococcus aureus: demonstration of a competence-conferring factor of bacteriophage origin in bacteriophage 80α lysates. J Bacteriol 148:294–300

    PubMed  CAS  Google Scholar 

  6. Birmingham VA, Pattee PA (1981) Genetic transformation in Staphylococcus aureus: isolation and characterization of a competence-conferring factor from bacteriophage 80α lysates. J Bacteriol 148:301–307

    PubMed  CAS  Google Scholar 

  7. Morikawa K, Takemura AJ, Inose Y et al (2012) Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog 8:1–20

    Article  Google Scholar 

  8. Gotz F, Schumacher B (1987) Improvements of protoplast transformation in Staphylococcus carnosus. FEMS Microbiol Lett 40:285–288

    Article  Google Scholar 

  9. Augustin J, Gotz F (1990) Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation. FEMS Microbiol Lett 66:203–207

    Article  CAS  Google Scholar 

  10. Waldron DE, Lindsay JA (2006) Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol 188:5578–5585

    Article  PubMed  CAS  Google Scholar 

  11. Corvaglia AR, Francois P, Hernandez D et al (2010) A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad Sci U S A 107:11954–11958

    Article  PubMed  CAS  Google Scholar 

  12. Xu SY, Corvaglia AR, Chan SH et al (2011) A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res 39:5597–5610

    Article  PubMed  CAS  Google Scholar 

  13. Monk IR, Shah IM, Xu M et al (2012) Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3:1–11

    Article  Google Scholar 

  14. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  PubMed  CAS  Google Scholar 

  15. Archer GL, Johnston JL (1983) Self-transmissable plasmids in staphylococci that encode resistance to aminoglycosides. Antimicrob Agents Chemother 24:70–77

    Article  PubMed  CAS  Google Scholar 

  16. Forbes BA, Schaberg DR (1983) Transfer of resistance plasmids from Staphylococcus epidermidis to Staphylococcus aureus: evidence for conjugative exchange of resistance. J Bacteriol 153:627–634

    PubMed  CAS  Google Scholar 

  17. Jaffe HW, Sweeney HM, Nathan C et al (1980) Identity and interspecific transfer of gentamicin-resistance plasmids in Staphylococcus aureus and Staphylococcus epidermidis. J Infect Dis 141:738–747

    Article  PubMed  CAS  Google Scholar 

  18. Caryl JA, O’Neill AJ (2009) Complete nucleotide sequence of pGO1, the prototype conjugative plasmid from the Staphylococci. Plasmid 62:35–38

    Article  PubMed  CAS  Google Scholar 

  19. Thomas WD, Archer G (1989) Identification and cloning of the conjugative transfer region of Staphylococcus aureus plasmid pGO1. J Bacteriol 171:684–691

    PubMed  CAS  Google Scholar 

  20. Projan SJ, Archer GL (1989) Mobilization of the relaxable Staphylococcus aureus plasmid pC221 by the conjugative plasmid pGO1 involves three pC22 loci. J Bacteriol 171:1941–1845

    Google Scholar 

  21. Novick R (1976) Plasmid-protein relaxation complexes in Staphylococcus aureus. J Bacteriol 127:1177–1187

    PubMed  CAS  Google Scholar 

  22. Caryl JA, Smith MCA, Thomas CD (2004) Reconstitution of a staphylococcal plasmid-protein relaxation complex in vitro. J Bacteriol 186:3374–3383

    Article  PubMed  CAS  Google Scholar 

  23. Mack D, Fischer W, Krokotsch A et al (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    PubMed  CAS  Google Scholar 

  24. Aubry-Damon H, Soussy C-J, Courvalin P (1998) Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 42:2590–2594

    PubMed  CAS  Google Scholar 

  25. Stieger M, Angehrn P, Wohlgensinger B et al (1996) GyrB mutations in Staphylococcus aureus strains resistant to cyclothialidine, coumermycin, and novobiocin. Antimicrob Agents Chemother 40:1060–1062

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Maliszewski, K.L., Nuxoll, A.S. (2014). Use of Electroporation and Conjugative Mobilization for Genetic Manipulation of Staphylococcus epidermidis . In: Fey, P. (eds) Staphylococcus Epidermidis. Methods in Molecular Biology, vol 1106. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-736-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-736-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-735-8

  • Online ISBN: 978-1-62703-736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics