Skip to main content

Tools for High-Throughput Process and Medium Optimization

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1104))

Abstract

Shaking technology in combination with small-scale disposable plastic vessels has become a notable bioprocess optimization tool widely exploited for cells grown in suspension. This chapter focuses on the two most accommodating culture systems: 50 mL centrifugation tubes and 96-deepwell plates. Used by many laboratories for routine passaging of suspension cultures and all types of optimization experiments as flexible culture system, the 50 mL shake tubes are the preferred vessels for manual manipulations, while microtiter plates are the ideal containers when automatic liquid handling systems are available. Both culture systems can offer to the cells a well-mixed environment which is close to the conditions found at larger scale in production bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kloeckner W, Buechs J (2012) Advances in shaking technologies. Trends Biotechnol 30:307–314

    Article  CAS  Google Scholar 

  2. Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends Microbiol 15:469–475

    Article  CAS  Google Scholar 

  3. Jordan M, De Jesus MJ, Eigenmann C et al (2005) A versatile disposable culture system for high throughput screening of process parameters and production cell lines. In: Godia F, Fussenegger M (eds) ESACT proceedings. Animal cell technology meets genomics. pp 381–383

    Google Scholar 

  4. Huynh HT, Chan LCL, Tran TTB et al (2012) Improving the robustness of a low-cost insect cell medium for baculovirus biopesticides production, via hydrolysate streamlining using a tube bioreactor-based statistical optimization routine. Biotechnol Prog 28:788–802

    Article  CAS  Google Scholar 

  5. DeJesus MJ, Girard P, Bourgeois M et al (2004) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technology. Biochem Eng J 17:217–223

    Article  CAS  Google Scholar 

  6. Xie Q, Michel PO, Baldi L et al (2011) TubeSpin bioreactor 50 for the high-density cultivation of Sf-9 insect cells in suspension. Biotechnol Lett 33:897–902

    Article  CAS  Google Scholar 

  7. Tissot S, Michel PO, Hacker DL et al (2012) kLa as a predictor for successful probe-independent mammalian cell bioprocesses in orbitally shaken bioreactors. New Biotechnol 29:387–394

    Article  CAS  Google Scholar 

  8. Meyer A, Condon RG, Keil G et al (2011) Fluorinert, an oxygen carrier, improves cell culture performance in deep square 96-well plates by facilitating oxygen transfer. Biotechnol Prog 28:171–178

    Article  Google Scholar 

  9. Bareither R, Pollard D (2011) A review of advanced small-scale parallel bioreactor technology for accelerated process development: current state and future need. Biotechnol Prog 27:2–14

    Article  CAS  Google Scholar 

  10. Wang Z, Belovich JM (2010) A simple apparatus for measuring cell settling velocity. Biotechnol Prog 26:1361–1366

    Article  CAS  Google Scholar 

  11. Barett TA, Wu A, Zhang H et al (2009) Microwell engineering characterization for mammalian cell culture process development. Biotechnol Bioeng 105:260–275

    Article  Google Scholar 

  12. Tissot S, Oberbek A, Reclari M et al (2011) Efficient and reproducible mammalian cell bioprocesses without probes and controllers? New Biotechnol 28:382–390

    Article  CAS  Google Scholar 

  13. Xie K, Zhang XW, Huang L et al (2011) On-line monitoring of oxygen in Tubespin, a novel, small-scale disposable bioreactor. Cytotechnology 63:345–350

    Article  CAS  Google Scholar 

  14. Funke F, Diederichs S, Kensy F et al (2009) The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol Bioeng 103:1118–1128

    Article  CAS  Google Scholar 

  15. Zagari F, Jordan M, Stettler M et al (2012) Lactate metabolism shift in CHO cells culture: the role of mitochondrial oxidative activity. New Biotechnol 30:238–245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jordan, M., Stettler, M. (2014). Tools for High-Throughput Process and Medium Optimization. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 1104. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-733-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-733-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-732-7

  • Online ISBN: 978-1-62703-733-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics