Skip to main content

Microfluidic Perfusion Culture

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1104))

Abstract

Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411

    Article  CAS  Google Scholar 

  2. Hong J, Edel JB, deMello AJ (2009) Micro- and nanofluidic systems for high-throughput biological screening. Drug Discov Today 14: 134–146

    Article  CAS  Google Scholar 

  3. Kang LF, Chung BG, Langer R, Khademhosseini A (2008) Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 13:1–13

    Article  CAS  Google Scholar 

  4. Wu MH, Huang SB, Lee GB (2010) Microfluidic cell culture systems for drug research. Lab Chip 10:939–956

    Article  CAS  Google Scholar 

  5. Inamdar NK, Borenstein JT (2011) Microfluidic cell culture models for tissue engineering. Curr Opin Biotechnol 22:681–689

    Article  CAS  Google Scholar 

  6. Neuzil P, Giselbrecht S, Lange K et al (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11:620–632

    Article  Google Scholar 

  7. van Midwoud PM, Verpoorte E, Groothuis GMM (2012) Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr Biol 3:509–521

    Article  Google Scholar 

  8. van der Meer AD, van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol 4:461–470

    Article  Google Scholar 

  9. Deng T, Wu HK, Brittain ST et al (2000) Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction. Anal Chem 72: 3176–3180

    Article  CAS  Google Scholar 

  10. Duffy DC, McDonald JC, Schueller OJA et al (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70: 4974–4984

    Article  CAS  Google Scholar 

  11. Hung PJ, Lee PJ, Sabounchi P, Aghdam N, Lin R, Lee LP (2005) A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab Chip 5:44–48

    Article  CAS  Google Scholar 

  12. Leclerc E, Sakai Y, Fujii T (2003) Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed Microdevices 5:109–114

    Article  CAS  Google Scholar 

  13. Kim L, Vahey MD, Lee HY et al (2006) Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 6: 394–406

    Article  CAS  Google Scholar 

  14. Lee PJ, Hung PJ, Rao VM et al (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 94:5–14

    Article  CAS  Google Scholar 

  15. Sugiura S, Edahiro J, Kikuchi K et al (2008) Pressure-driven perfusion culture microchamber array for parallel drug cytotoxicity assay. Biotechnol Bioeng 100:1156–1165

    Article  CAS  Google Scholar 

  16. Hattori K, Sugiura S, Kanamori T (2009) Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab Chip 9: 1763–1772

    Article  CAS  Google Scholar 

  17. Sugiura S, Hattori K, Kanamori T (2010) Microfluidic serial dilution cell-based assay for analyzing drug dose response over a wide concentration range. Anal Chem 82:8278–8282

    Article  CAS  Google Scholar 

  18. White FM (2006) Viscous fluid flow. McGraw-Hill, Boston, MA

    Google Scholar 

  19. Hattori K, Sugiura S, Kanamori T (2011) Microenvironment array chip for cell culture environment screening. Lab Chip 11:212–214

    Article  CAS  Google Scholar 

  20. Berthier E, Young EWK, Beebe D (2012) Engineers are from PDMS-land, Biologists are from polystyrenia. Lab Chip 12:1224–1237

    Article  CAS  Google Scholar 

  21. Hattori K, Sugiura S, Kanamori T (2010) On-chip cell culture on a microarray of extracellular matrix with surface modification of poly(dimethylsiloxane). Biotechnol J 5:463–469

    Article  CAS  Google Scholar 

  22. Hattori K, Sugiura S, Kanamori T (2011) Scaffold fabrication in a perfusion culture microchamber array chip by O2 plasma bonding of poly(dimethylsiloxane) protected by a physical mask. Biomicrofluidics 5:22204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hattori, K., Sugiura, S., Kanamori, T. (2014). Microfluidic Perfusion Culture. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 1104. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-733-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-733-4_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-732-7

  • Online ISBN: 978-1-62703-733-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics