Skip to main content

Finding Instances of Riboswitches and Ribozymes by Homology Search of Structured RNA with Infernal

  • Protocol
  • First Online:
Therapeutic Applications of Ribozymes and Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1103))

Abstract

In the genomics era, computational tools are essential to extract information from sequences and annotate them to allow easy access to genes. Fortunately, many of these tools are now part of standard pipelines. As a consequence, a cornucopia of genomic features is available in multiple databases. Nevertheless, as novel genomes are sequenced and new structured RNAs are discovered, homology searches and additional analyses need to be performed. In this chapter, we propose simple ways of finding instances of riboswitches and ribozymes in databases or in unannotated genomes, as well as ways of finding variants that deviate from the typical consensus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655

    Article  CAS  PubMed  Google Scholar 

  2. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res 40:D48–D53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sun S, Chen J, Li W, Altintas I, Lin A, Peltier S, Stocks K, Allen EE, Ellisman M, Grethe J, Wooley J (2011) Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource. Nucleic Acids Res 39:D546–D551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR (2010) Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 11:R31

    Article  PubMed Central  PubMed  Google Scholar 

  5. Weinberg Z, Perreault J, Meyer MM, Breaker RR (2009) Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 462:656–659

    Article  CAS  PubMed  Google Scholar 

  6. Shi Y, Tyson GW, DeLong EF (2009) Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature 459:266–269

    Article  CAS  PubMed  Google Scholar 

  7. Livny J, Waldor MK (2007) Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 10:96–101

    Article  CAS  PubMed  Google Scholar 

  8. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, Kent J, Miller W, Haussler D (2006) Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput Biol 2:e33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rivas E, Eddy SR (2001) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2:8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Washietl S (2007) Prediction of structural noncoding RNAs with RNAz. Methods Mol Biol 395:503–526

    Article  CAS  PubMed  Google Scholar 

  11. Gruber AR, Neubock R, Hofacker IL, Washietl S (2007) The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Res 35:W335–W338

    Article  PubMed Central  PubMed  Google Scholar 

  12. Washietl S, Hofacker IL, Stadler PF (2005) Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 102:2454–2459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yao Z, Weinberg Z, Ruzzo WL (2006) CMfinder–a covariance model based RNA motif finding algorithm. Bioinformatics 22:445–452

    Article  CAS  PubMed  Google Scholar 

  14. Harmanci AO, Sharma G, Mathews DH (2007) Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics 8:130

    Article  PubMed Central  PubMed  Google Scholar 

  15. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3:e65

    Article  PubMed Central  PubMed  Google Scholar 

  16. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31:3423–3428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Google Scholar 

  18. http://en.wikipedia.org/wiki/List_of_RNA_structure_prediction_software

  19. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cochrane JC, Strobel SA (2008) Catalytic strategies of self-cleaving ribozymes. Acc Chem Res 41:1027–1035

    Article  CAS  PubMed  Google Scholar 

  21. Hammann C, Luptak A, Perreault J, de la Pena M (2012) The ubiquitous hammerhead ribozyme. RNA 18:871–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  CAS  PubMed  Google Scholar 

  23. Lee ER, Blount KF, Breaker RR (2009) Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 6:187–194

    Article  CAS  PubMed  Google Scholar 

  24. Blount KF, Wang JX, Lim J, Sudarsan N, Breaker RR (2007) Antibacterial lysine analogs that target lysine riboswitches. Nat Chem Biol 3:44–49

    Article  CAS  PubMed  Google Scholar 

  25. Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24:1558–1564

    Article  CAS  PubMed  Google Scholar 

  26. Sudarsan N, Cohen-Chalamish S, Nakamura S, Emilsson GM, Breaker RR (2005) Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 12:1325–1335

    Article  CAS  PubMed  Google Scholar 

  27. Ott E, Stolz J, Lehmann M, Mack M (2009) The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol 6:276–280

    Article  CAS  PubMed  Google Scholar 

  28. Kim JN, Blount KF, Puskarz I, Lim J, Link KH, Breaker RR (2009) Design and antimicrobial action of purine analogues that bind Guanine riboswitches. ACS Chem Biol 4:915–927

    Article  CAS  PubMed  Google Scholar 

  29. Mulhbacher J, Brouillette E, Allard M, Fortier LC, Malouin F, Lafontaine DA (2010) Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog 6:e1000865

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lunse CE, Schmidt MS, Wittmann V, Mayer G (2011) Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem Biol 6:675–678

    Article  CAS  PubMed  Google Scholar 

  31. http://rfam.sanger.ac.uk

  32. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hoeppner MP, Barquist L, Gardner PP. An introduction to RNA databases. Methods in Molecular Biology (In press)

    Google Scholar 

  34. Barquist L, Burge SW, Gardner PP. Building non-coding RNA families. Methods in Molecular Biology (In press)

    Google Scholar 

  35. McCown PJ, Roth A, Breaker RR (2011) An expanded collection and refined consensus model of glmS ribozymes. RNA 17:728–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. de la Pena M, Garcia-Robles I (2010) Intronic hammerhead ribozymes are ultraconserved in the human genome. EMBO Rep 11:711–716

    Article  PubMed Central  PubMed  Google Scholar 

  37. Jimenez RM, Delwart E, Luptak A (2011) Structure-based search reveals hammerhead ribozymes in the human microbiome. J Biol Chem 286:7737–7743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Perreault J, Weinberg Z, Roth A, Popescu O, Chartrand P, Ferbeyre G, Breaker RR (2011) Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput Biol 7:e1002031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Seehafer C, Kalweit A, Steger G, Graf S, Hammann C (2011) From alpaca to zebrafish: hammerhead ribozymes wherever you look. RNA 17:21–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. de la Pena M, Garcia-Robles I (2010) Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA 16:1943–1950

    Article  PubMed Central  PubMed  Google Scholar 

  41. http://infernal.janelia.org/

  42. http://rfam.sanger.ac.uk/genome/browse#A

  43. Nawrocki EP, Kolbe DL, Eddy SD (2009) Infernal user guide. ftp://selab.janelia.org/pub/software/infernal/Userguide.pdf

  44. Nawrocki EP. Annotating functional RNAs in genomes using Infernal. Methods in Molecular Biology (In press)

    Google Scholar 

  45. ftp://selab.janelia.org/pub/software/infernal/infernal-1.0.2.tar.gz

  46. http://rfam.sanger.ac.uk/family/RF00167#tabview=tab2

  47. http://www.ncbi.nlm.nih.gov/nuccore/223666304

  48. ftp://ftp.ncbi.nih.gov/genomes/Bacteria/all.fna.tar.gz

  49. Griffiths-Jones S (2005) RALEE–RNA ALignment editor in Emacs. Bioinformatics 21:257–259

    Article  CAS  PubMed  Google Scholar 

  50. http://personalpages.manchester.ac.uk/staff/sam.griffiths-jones/software/ralee/

  51. http://www.gnu.org/software/emacs

  52. Przybilski R, Hammann C (2007) The tolerance to exchanges of the Watson Crick base pair in the hammerhead ribozyme core is determined by surrounding elements. RNA 13:1625–1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8:R239

    Article  PubMed Central  PubMed  Google Scholar 

  54. Kim JN, Roth A, Breaker RR (2007) Guanine riboswitch variants from Mesoplasma florum selectively recognize 2’-deoxyguanosine. Proc Natl Acad Sci U S A 104:16092–16097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. http://www.ncbi.nlm.nih.gov/nuccore/159184118?report=fasta

  56. ftp://ftp.sanger.ac.uk/pub/databases/Rfam/CURRENT/Rfam.cm.gz

  57. http://github.com/ppgardne/RNIE

  58. Gardner PP, Barquist L, Bateman A, Nawrocki EP, Weinberg Z (2011) RNIE: genome-wide prediction of bacterial intrinsic terminators. Nucleic Acids Res 39:5845–5852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant (RGPIN 418240-2012) and by a grant from The Banting Research Foundation to JP.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

El Korbi, A., Ouellet, J., Naghdi, M.R., Perreault, J. (2014). Finding Instances of Riboswitches and Ribozymes by Homology Search of Structured RNA with Infernal. In: Lafontaine, D., Dubé, A. (eds) Therapeutic Applications of Ribozymes and Riboswitches. Methods in Molecular Biology, vol 1103. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-730-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-730-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-729-7

  • Online ISBN: 978-1-62703-730-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics