Skip to main content

Screening Inhibitory Potential of Anti-HIV RT RNA Aptamers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1103))

Abstract

Aptamers targeted to HIV reverse transcriptase (RT) have been demonstrated to inhibit RT in biochemical assays and as in cell culture. However, methods employed to date to evaluate viral suppression utilize time-consuming serial passage of infectious HIV in aptamer-expressing stable cell lines. We have established a rapid, transfection-based assay system to effectively examine the inhibitory potential of anti-HIV RT aptamers expressed between two catalytically inactive hammerhead ribozymes. Our system can be altered and optimized for a variety of cloning schemes, and addition of sequences of interest to the cassette is simple and straightforward. When paired with methods to analyze aptamer RNA accumulation and localization in cells and as packaging into pseudotyped virions, the method has a very high level of success in predicting good inhibitors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Joshi PJ, Fisher TS, Prasad VR (2003) Anti-HIV inhibitors based on nucleic acids: emergence of aptamers as potent antivirals. Curr Drug Targets Infect Disord 3(4):383–400

    Article  CAS  PubMed  Google Scholar 

  2. Gopinath SC (2007) Antiviral aptamers. Arch Virol 152(12):2137–2157. doi:10.1007/s00705-007-1014-1

    Article  CAS  PubMed  Google Scholar 

  3. Burke DH, Scates L, Andrews K, Gold L (1996) Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. J Mol Biol 264(4):650–666. doi:10.1006/jmbi.1996.0667

    Article  CAS  PubMed  Google Scholar 

  4. Tuerk C, MacDougal S, Gold L (1992) RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A 89(15):6988–6992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Burnett John C, Rossi John J (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71. doi:10.1016/j.chembiol.2011.12.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Zhou J, Rossi JJ (2011) Aptamer-targeted RNAi for HIV-1 therapy. Methods Mol Biol 721:355–371. doi:10.1007/978-1-61779-037-9_22

    Article  CAS  PubMed  Google Scholar 

  7. Syed MA, Pervaiz S (2010) Advances in aptamers. Oligonucleotides 20(5):215–224. doi:10.1089/oli.2010.0234

    Article  CAS  PubMed  Google Scholar 

  8. Cohen C, Forzan M, Sproat B, Pantophlet R, McGowan I, Burton D, James W (2008) An aptamer that neutralizes R5 strains of HIV-1 binds to core residues of gp120 in the CCR5 binding site. Virology 381(1):46–54. doi:10.1016/j.virol.2008.08.025

    Article  CAS  PubMed  Google Scholar 

  9. Li N, Wang Y, Pothukuchy A, Syrett A, Husain N, Gopalakrisha S, Kosaraju P, Ellington AD (2008) Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res 36(21):6739–6751. doi:10.1093/nar/gkn775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H, Smith DD, Swiderski P, Rossi JJ, Akkina R (2011) An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med 3(66):66ra66. doi:10.1126/scitranslmed.3001581

    Google Scholar 

  11. Held DM, Kissel JD, Thacker SJ, Michalowski D, Saran D, Ji J, Hardy RW, Rossi JJ, Burke DH (2007) Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers. J Virol 81(10):5375–5384. doi:10.1128/JVI.01923-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chaloin L, Lehmann MJ, Sczakiel G, Restle T (2002) Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res 30(18):4001–4008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kolb G, Reigadas S, Castanotto D, Faure A, Ventura M, Rossi JJ, Toulme JJ (2006) Endogenous expression of an anti-TAR aptamer reduces HIV-1 replication. RNA Biol 3(4):150–156

    Article  CAS  PubMed  Google Scholar 

  14. Joshi P, Prasad VR (2002) Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). J Virol 76(13):6545–6557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ramalingam D, Duclair S, Datta SA, Ellington A, Rein A, Prasad VR (2011) RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production. J Virol 85(1):305–314. doi:10.1128/JVI.02626-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhang W, Ke W, Wu SS, Gan L, Zhou R, Sun CY, Long QS, Jiang W, Xin HB (2009) An adenovirus-delivered peptide aptamer C1-1 targeting the core protein of hepatitis B virus inhibits viral DNA replication and production in vitro and in vivo. Peptides 30(10):1816–1821. doi:10.1016/j.peptides. 2009.07.006

    Google Scholar 

  17. Feng H, Beck J, Nassal M, Hu KH (2011) A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS ONE 6(11):e27862. doi:10.1371/journal.pone.0027862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kaiser N, Lischka P, Wagenknecht N, Stamminger T (2009) Inhibition of human cytomegalovirus replication via peptide aptamers directed against the nonconventional nuclear localization signal of the essential viral replication factor pUL84. J Virol 83(22):11902–11913. doi:10.1128/JVI.01378-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Umehara T, Fukuda K, Nishikawa F, Sekiya S, Kohara M, Hasegawa T, Nishikawa S (2004) Designing and analysis of a potent bi-functional aptamers that inhibit protease and helicase activities of HCV NS3. Nucleic Acids Symp Ser 48:195–196. doi:10.1093/nass/48.1.195

    Article  Google Scholar 

  20. Kikuchi K, Umehara T, Fukuda K, Kuno A, Hasegawa T, Nishikawa S (2005) A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III-IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res 33(2):683–692. doi:10.1093/nar/gki215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jones LA, Clancy LE, Rawlinson WD, White PA (2006) High-affinity aptamers to subtype 3a hepatitis C virus polymerase display genotypic specificity. Antimicrob Agents Chemother 50(9):3019–3027. doi:10.1128/AAC. 01603-05

    Google Scholar 

  22. Kikuchi K, Umehara T, Nishikawa F, Fukuda K, Hasegawa T, Nishikawa S (2009) Increased inhibitory ability of conjugated RNA aptamers against the HCV IRES. Biochem Biophys Res Commun 386(1):118–123. doi:10.1016/j.bbrc.2009.05.135

    Article  CAS  PubMed  Google Scholar 

  23. Romero-Lopez C, Diaz-Gonzalez R, Barroso-delJesus A, Berzal-Herranz A (2009) Inhibition of hepatitis C virus replication and internal ribosome entry site-dependent translation by an RNA molecule. J Gen Virol 90(Pt 7):1659–1669. doi:10.1099/vir.0.008821-0

    Article  CAS  PubMed  Google Scholar 

  24. Cheng C, Dong J, Yao L, Chen A, Jia R, Huan L, Guo J, Shu Y, Zhang Z (2008) Potent inhibition of human influenza H5N1 virus by oligonucleotides derived by SELEX. Biochem Biophys Res Commun 366(3):670–674. doi:10.1016/j.bbrc.2007.11.183

    Article  CAS  PubMed  Google Scholar 

  25. Park SY, Kim S, Yoon H, Kim KB, Kalme SS, Oh S, Song CS, Kim DE (2011) Selection of an antiviral RNA aptamer against hemagglutinin of the subtype H5 avian influenza virus. Nucleic Acid Ther 21(6):395–402. doi:10.1089/nat.2011.0321

    Article  CAS  PubMed  Google Scholar 

  26. Lange MJ, Sharma TK, Whatley AS, Landon LA, Tempesta MA, Burke DH, Johnson MC (2012) Robust suppression of HIV replication by intracellularly expressed reverse transcriptase aptamers is independent of ribozyme processing. Mol Ther 20:2304–2314. doi:10.1038/mt.2012.158

    Google Scholar 

  27. Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10(9):708–712. doi:10.1038/nsb959

    Article  CAS  PubMed  Google Scholar 

  28. Reed SE, Staley EM, Mayginnes JP, Pintel DJ, Tullis GE (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138(1–2):85–98. doi:10.1016/j.jviromet. 2006.07.024

    Google Scholar 

  29. Saksmerprome V, Roychowdhury-Saha M, Jayasena S, Khvorova A, Burke DH (2004) Artificial tertiary motifs stabilize trans-cleaving hammerhead ribozymes under conditions of submillimolar divalent ions and high temperatures. RNA 10(12):1916–1924. doi:10.1261/rna.7159504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Roychowdhury-Saha M, Burke DH (2007) Distinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme. RNA 13(6):841–848. doi:10.1261/rna.339207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Burke DH, Greathouse ST (2005) Low-magnesium, trans-cleavage activity by type III, tertiary stabilized hammerhead ribozymes with stem 1 discontinuities. BMC Biochem 6:14. doi:10.1186/1471-2091-6-14

    Article  PubMed Central  PubMed  Google Scholar 

  32. Aiken C (2009) Cell-Free Assays for HIV-1 Uncoating. Methods Mol Biol 485:41–53. doi:10.1007/978-1-59745-170-3_4

  33. Ditzler MA, Bose D, Shkriabai N, Marchand B, Sarafianos SG, Kvaratskhelia M, Burke DH (2011) Broad-spectrum aptamer inhibitors of HIV reverse transcriptase closely mimic natural substrates. Nucleic Acids Res 39(18):8237–8247. doi:10.1093/nar/gkr381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Lange, M.J., Burke, D.H. (2014). Screening Inhibitory Potential of Anti-HIV RT RNA Aptamers. In: Lafontaine, D., Dubé, A. (eds) Therapeutic Applications of Ribozymes and Riboswitches. Methods in Molecular Biology, vol 1103. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-730-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-730-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-729-7

  • Online ISBN: 978-1-62703-730-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics