Skip to main content

Probing Riboswitch Binding Sites with Molecular Docking, Focused Libraries, and In-line Probing Assays

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1103))

Abstract

Molecular docking calculations combined with chemically focused libraries can bring insight in the exploration of the structure–activity relationships for a series of related compounds against an RNA target. Yet, the in silico engine must be fueled by experimental observations to drive the research into a more effective ligand-discovery path. Here we show how molecular docking predictions can be coupled with in-line probing assays to explore the available chemical and configurational space in a riboswitch binding pocket.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Guha R (2013) On exploring structure-activity relationships. Methods Mol Biol 993:81–94. doi: 10.1007/978-1-62703-342-8_6

    Google Scholar 

  2. Bleicher KH, Bohm HJ, Muller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378

    Article  CAS  PubMed  Google Scholar 

  3. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818

    Article  CAS  PubMed  Google Scholar 

  4. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Orry AJ, Abagyan RA, Cavasotto CN (2006) Structure-based development of target-specific compound libraries. Drug Discov Today 11:261–266

    Article  CAS  PubMed  Google Scholar 

  6. Leach AR, Hann MM (2000) The in silico world of virtual libraries. Drug Discov Today 5:326–336

    Article  CAS  PubMed  Google Scholar 

  7. Valler MJ, Green D (2000) Diversity screening versus focussed screening in drug discovery. Drug Discov Today 5:286–293

    Article  PubMed  Google Scholar 

  8. Villar HO, Koehler RT (2000) Comments on the design of chemical libraries for screening. Mol Divers 5:13–24

    Article  CAS  PubMed  Google Scholar 

  9. Mulhbacher J, Brouillette E, Allard M, Fortier LC, Malouin F, Lafontaine DA (2010) Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog 6:e1000865

    Article  PubMed Central  PubMed  Google Scholar 

  10. Irwin JJ, Shoichet BK (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model (Epub ahead of print)

    Google Scholar 

  12. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  13. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–23

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Shen J, Sun X, Li W, Liu G, Tang Y (2010) Accuracy assessment of protein-based docking programs against RNA targets. J Chem Inf Model 50:1134–1146

    Article  CAS  PubMed  Google Scholar 

  15. Batey RT, Gilbert SD, Montange RK (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432:411–415

    Article  CAS  PubMed  Google Scholar 

  16. Irwin JJ, Shoichet BK, Mysinger MM, Huang N, Colizzi F, Wassam P, Cao Y (2009) Automated docking screens: a feasibility study. J Med Chem 52:5712–5720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Serganov A, Yuan YR, Pikovskaya O, Polonskaia A, Malinina L, Phan AT, Hobartner C, Micura R, Breaker RR, Patel DJ (2004) Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol 11:1729–1741

    Article  CAS  PubMed  Google Scholar 

  19. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586

    Article  CAS  PubMed  Google Scholar 

  20. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Muller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Science 317:1881–1886

    Article  PubMed  Google Scholar 

  22. Voth AR, Khuu P, Oishi K, Ho PS (2009) Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nat Chem 1:74–79

    Article  CAS  PubMed  Google Scholar 

  23. Gilbert SD, Reyes FE, Edwards AL, Batey RT (2009) Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs. Structure 17:857–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mandal M, Breaker RR (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35

    Article  CAS  PubMed  Google Scholar 

  25. Irwin JJ, Raushel FM, Shoichet BK (2005) Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 44:12316–12328

    Article  CAS  PubMed  Google Scholar 

  26. Milletti F, Vulpetti A (2010) Tautomer preference in PDB complexes and its impact on structure-based drug discovery. J Chem Inf Model 50:1062–1074

    Article  CAS  PubMed  Google Scholar 

  27. Martin YC (2009) Let’s not forget tautomers. J Comput Aided Mol Des 23:693–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  29. Bohm HJ, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U, Stahl M (2004) Fluorine in medicinal chemistry. Chembiochem 5:637–643

    Article  PubMed  Google Scholar 

  30. Wuitschik G, Carreira EM, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Muller K (2010) Oxetanes in drug discovery: structural and synthetic insights. J Med Chem 53:3227–3246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Sciences and Engineering Research Council of Canada (NSERC). D.A.L. is a Canadian Institutes of Health Research (CIHR) New Investigator Scholar. F.C. was supported by the “Young SISSA Scientist” grant (FISB.647 2011) for independent research development. F.C. and G.B. acknowledge the European Research Council for funding through the Starting Grant S-RNA-S (no. 306662).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Colizzi, F., Lamontagne, AM., Lafontaine, D.A., Bussi, G. (2014). Probing Riboswitch Binding Sites with Molecular Docking, Focused Libraries, and In-line Probing Assays. In: Lafontaine, D., Dubé, A. (eds) Therapeutic Applications of Ribozymes and Riboswitches. Methods in Molecular Biology, vol 1103. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-730-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-730-3_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-729-7

  • Online ISBN: 978-1-62703-730-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics