Skip to main content

The Clinical Use of PET/CT in the Evaluation of Melanoma

  • Protocol
  • First Online:
Molecular Diagnostics for Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1102))

Abstract

Positron emission tomography combined with computed tomography (PET/CT) has emerged in the last decade as a dominant imaging modality used for staging, monitoring response and surveillance of various cancers, including melanoma. Using 2-deoxy-2-(18F)fluoro-d-glucose (18F-FDG) as the radiopharmaceutical, PET/CT has demonstrated its efficacy and its utility in the management of patients with advanced melanoma. Nonetheless, challenges remain in the early stage evaluation of melanoma and in the development of novel radiotracers to better characterize lesions found on PET/CT. This chapter focuses on the advantages and limitations of this imaging modality in melanoma. We also detail and describe the approach to perform 18F-FDG PET/CT, the methods to accurately quantify lesions, as well as the pearls/pitfalls of image interpretation. Finally, an overview of preclinical and investigational clinical radiopharmaceuticals is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol 13(8):790–801. doi:10.1016/s1470-2045(12)70211-5

    Article  PubMed  Google Scholar 

  2. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics, 2004. CA Cancer J Clin 54(1):8–29

    Article  PubMed  Google Scholar 

  3. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. Ca 60(5):277–300

    PubMed  Google Scholar 

  4. Linos E, Swetter SM, Cockburn MG, Colditz GA, Clarke CA (2009) Increasing burden of melanoma in the United States. J Invest Dermatol 129(7):1666–1674. doi:10.1038/jid.2008.423

    Article  CAS  PubMed  Google Scholar 

  5. Uren RF, Thompson JF, Howman-Giles R, Chung DK (2006) The role of lymphoscintigraphy in the detection of lymph node drainage in melanoma. Surg Oncol Clin N Am 15(2):285–300. doi:10.1016/j.soc.2005.12.006

    Article  PubMed  Google Scholar 

  6. Statius Muller MG, Hennipman FA, van Leeuwen PA, Pijpers R, Vuylsteke RJ, Meijer S (2002) Unpredictability of lymphatic drainage patterns in melanoma patients. Eur J Nucl Med Mol Imaging 29(2):255–261

    Article  PubMed  Google Scholar 

  7. Elias Brountzos IP, Dimitrios Bafaloukos, Dimitrios Kelekis (2001) Bone metastases from malignant melanoma: a retrospective review and analysis of 28 cases. Radiol Oncol 35:209–214

    Google Scholar 

  8. Kalff V, Hicks RJ, Ware RE, Greer B, Binns DS, Hogg A (2002) Evaluation of high-risk melanoma: comparison of [18F]FDG PET and high-dose 67Ga SPET. Eur J Nucl Med Mol Imaging 29(4):506–515. doi:10.1007/s00259-001-0735-8

    Article  CAS  PubMed  Google Scholar 

  9. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. doi:10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  10. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965

    Article  CAS  PubMed  Google Scholar 

  11. Nutt R (2002) The history of positron emission tomography. Mol Imaging Biol 4(1):11

    Article  PubMed  Google Scholar 

  12. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48(3):471–480

    PubMed  Google Scholar 

  13. Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC (2011) Physical performance of the new hybrid PETCT discovery-690. Med Phys 38(10):5394–5411. doi:10.1118/1.3635220

    Article  CAS  PubMed  Google Scholar 

  14. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW (2011) Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 56(8):2375–2389. doi:10.1088/0031-9155/56/8/004

    Article  CAS  PubMed  Google Scholar 

  15. Basu S, Kwee TC, Surti S, Akin EA, Yoo D, Alavi A (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18. doi:10.1111/j.1749-6632.2011.06077.x

    Article  CAS  PubMed  Google Scholar 

  16. Reinhardt MJ, Joe AY, Jaeger U, Huber A, Matthies A, Bucerius J, Roedel R, Strunk H, Bieber T, Biersack HJ, Tuting T (2006) Diagnostic performance of whole body dual modality 18F-FDG PET/CT imaging for N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol 24(7):1178–1187. doi:10.1200/jco.2005.03.5634

    Article  PubMed  Google Scholar 

  17. Vallabhajosula S, Solnes L, Vallabhajosula B (2011) A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med 41(4):246–264. doi:10.1053/j.semnuclmed.2011.02.003

    Article  PubMed  Google Scholar 

  18. Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE (1978) Labeled 2-deoxy-d-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2-fluoro-d-glucose. J Labelled Comp Rad 14(2):175–183. doi:10.1002/jlcr.2580140204

    Article  CAS  Google Scholar 

  19. Yu S (2006) Review of F-FDG synthesis and quality control. Biomed Imaging Interv J 2(4):e57. doi:10.2349/biij.2.4.e57

    Article  CAS  PubMed  Google Scholar 

  20. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202(3):654–662. doi:10.1002/jcp.20166

    Article  CAS  PubMed  Google Scholar 

  21. Buck AK, Reske SN (2004) Cellular origin and molecular mechanisms of 18F-FDG uptake: is there a contribution of the endothelium? J Nucl Med 45(3):461–463

    CAS  PubMed  Google Scholar 

  22. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  23. Berger KL, Nicholson SA, Dehdashti F, Siegel BA (2000) FDG PET evaluation of mucinous neoplasms. Am J Roentgenol 174(4):1005–1008

    Article  CAS  Google Scholar 

  24. Bos R, van der Hoeven JJM, van der Wall E, van der Groep P, van Diest PJ, Comans EFI, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CFM (2002) Biologic correlates of 18fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20(2):379–387. doi:10.1200/jco.20.2.379

    Article  CAS  PubMed  Google Scholar 

  25. Kaneta T, Hakamatsuka T, Takanami K, Yamada T, Takase K, Sato A, Higano S, Kinomura S, Fukuda H, Takahashi S, Yamada S (2006) Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization. Ann Nucl Med 20(3):203–208

    Article  PubMed  Google Scholar 

  26. Beyer T, Czernin J, Freudenberg LS (2011) Variations in clinical PET/CT operations: results of an international survey of active PET/CT users. J Nucl Med 52(2):303–310. doi:10.2967/jnumed.110.079624

    Article  PubMed  Google Scholar 

  27. Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hanna L, Stine SH, Coleman RE (2009) The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the national oncologic PET registry. Cancer 115(2):410–418. doi:10.1002/cncr.24000

    Article  PubMed  Google Scholar 

  28. Maubec E, Lumbroso J, Masson F, Suciu V, Kolb F, Mamelle G, Cavalcanti A, Boitier F, Spatz A, Auperin A, Leboulleux S, Avril MF (2007) F-18 fluorodeoxy-d-glucose positron emission tomography scan in the initial evaluation of patients with a primary melanoma thicker than 4 mm. Melanoma Res 17(3):147–154. doi:10.1097/CMR.0b013e32815c10b0

    Article  PubMed  Google Scholar 

  29. Wagner JD, Schauwecker D, Davidson D, Coleman JJ III, Saxman S, Hutchins G, Love C, Hayes JT (1999) Prospective study of fluorodeoxyglucose-positron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol 17(5):1508

    CAS  PubMed  Google Scholar 

  30. Singh B, Ezziddin S, Palmedo H, Reinhardt M, Strunk H, Tuting T, Biersack HJ, Ahmadzadehfar H (2008) Preoperative 18F-FDG-PET/CT imaging and sentinel node biopsy in the detection of regional lymph node metastases in malignant melanoma. Melanoma Res 18(5):346–352. doi:10.1097/CMR.0b013e32830b363b

    Article  PubMed  Google Scholar 

  31. Horn J, Sjostrand H, Lock-Andersen J, Loft A (2010) PET scanning for malignant melanoma and positive sentinel node diagnostics. Ugeskr Laeger 172(15):1126–1130

    PubMed  Google Scholar 

  32. Bastiaannet E, Wobbes T, Hoekstra OS, van der Jagt EJ, Brouwers AH, Koelemij R, de Klerk JM, Oyen WJ, Meijer S, Hoekstra HJ (2009) Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography and computed tomography in patients with melanoma with palpable lymph node metastases: diagnostic accuracy and impact on treatment. J Clin Oncol 27(28):4774–4780. doi:10.1200/jco.2008.20.1822

    Article  PubMed  Google Scholar 

  33. Aukema TS, Valdes Olmos RA, Wouters MW, Klop WM, Kroon BB, Vogel WV, Nieweg OE (2010) Utility of preoperative 18F-FDG PET/CT and brain MRI in melanoma patients with palpable lymph node metastases. Ann Surg Oncol 17(10):2773–2778. doi:10.1245/s10434-010-1088-y

    Article  PubMed  Google Scholar 

  34. Krug B, Crott R, Lonneux M, Baurain JF, Pirson AS, Vander Borght T (2008) Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology 249(3):836–844. doi:10.1148/radiol.2493080240

    Article  PubMed  Google Scholar 

  35. Strobel K, Dummer R, Husarik DB, Perez Lago M, Hany TF, Steinert HC (2007) High-risk melanoma: accuracy of FDG PET/CT with added CT morphologic information for detection of metastases. Radiology 244(2):566–574. doi:10.1148/radiol.2442061099

    Article  PubMed  Google Scholar 

  36. Ho Shon I, Chung DKV, Saw RPM, Thompson J (2008) Guidelines for imaging in cutaneous melanoma. Nucl Med Commun 29(10):877–879

    Article  PubMed  Google Scholar 

  37. Xing Y, Bronstein Y, Ross MI, Askew RL, Lee JE, Gershenwald JE, Royal R, Cormier JN (2011) Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. J Natl Cancer Inst 103(2):129–142. doi:10.1093/jnci/djq455

    Article  PubMed  Google Scholar 

  38. Iagaru A, Quon A, Johnson D, Gambhir SS, McDougall IR (2007) 2-Deoxy-2-[F-18]fluoro-d-glucose positron emission tomography/computed tomography in the management of melanoma. Mol Imaging Biol 9(1):50–57. doi:10.1007/s11307-006-0065-0

    Article  CAS  PubMed  Google Scholar 

  39. Ho Shon IA, Chung DK, Saw RP, Thompson JF (2008) Imaging in cutaneous melanoma. Nucl Med Commun 29(10):847–876. doi:10.1097/MNM.0b013e32830439fb

    Article  PubMed  Google Scholar 

  40. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47(5):885–895

    PubMed  Google Scholar 

  41. Boellaard R, O'Doherty M, Weber W, Mottaghy F, Lonsdale M, Stroobants S, Oyen WJG, Kotzerke J, Hoekstra O, Pruim J, Marsden P, Tatsch K, Hoekstra C, Visser E, Arends B, Verzijlbergen F, Zijlstra J, Comans EFI, Lammertsma A, Paans A, Willemsen A, Beyer T, Bockisch A, Schaefer Prokop C, Delbeke D, Baum R, Chiti A, Krause B (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37(1):181–200

    Article  PubMed  Google Scholar 

  42. Masuda Y, Kondo C, Matsuo Y, Uetani M, Kusakabe K (2009) Comparison of imaging protocols for 18F-FDG PET/CT in overweight patients: optimizing scan duration versus administered dose. J Nucl Med 50(6):844–848. doi:10.2967/jnumed.108.060590

    Article  PubMed  Google Scholar 

  43. ICRP (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP 38(1–2):1–197. doi:10.1016/j.icrp.2008.08.003

    CAS  PubMed  Google Scholar 

  44. Dougeni E, Faulkner K, Panayiotakis G (2012) A review of patient dose and optimisation methods in adult and paediatric CT scanning. Eur J Radiol 81(4):e665–e683. doi:10.1016/j.ejrad.2011.05.025

    Article  CAS  PubMed  Google Scholar 

  45. Kumar S, Pandey AK, Sharma P, Malhotra A, Kumar R (2012) Optimization of the CT acquisition protocol to reduce patient dose without compromising the diagnostic quality for PET-CT: a phantom study. Nucl Med Commun 33(2):164–170. doi:10.1097/MNM.0b013e32834e0993

    Article  PubMed  Google Scholar 

  46. Xia T, Alessio AM, De Man B, Manjeshwar R, Asma E, Kinahan PE (2012) Ultra-low dose CT attenuation correction for PET/CT. Phys Med Biol 57(2):309–328. doi:10.1088/0031-9155/57/2/309

    Article  PubMed  Google Scholar 

  47. McKeown C, Dempsey MF, Gillen G, Paterson C (2012) Quantitative analysis shows that contrast medium in positron emission tomography/computed tomography may cause significant artefacts. Nucl Med Commun 33(8):864–871. doi:10.1097/MNM.0b013e3283531d45

    Article  PubMed  Google Scholar 

  48. El Fakhri G, Santos PA, Badawi RD, Holdsworth CH, Van Den Abbeele AD, Kijewski MF (2007) Impact of acquisition geometry, image processing, and patient size on lesion detection in whole-body 18F-FDG PET. J Nucl Med 48(12):1951–1960. doi:10.2967/jnumed.108.007369

    Article  PubMed  Google Scholar 

  49. Sugawara Y, Zasadny KR, Neuhoff AW, Wahl RL (1999) Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology 213(2):521–525

    Article  CAS  PubMed  Google Scholar 

  50. Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50(Suppl 1):11S–20S. doi:10.2967/jnumed.108.057182

    Article  CAS  PubMed  Google Scholar 

  51. Culverwell AD, Scarsbrook AF, Chowdhury FU (2011) False-positive uptake on 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography/computed tomography (PET/CT) in oncological imaging. Clin Radiol 66(4):366–382. doi:10.1016/j.crad.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  52. Schöder H, Fury M, Lee N, Kraus D (2009) PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med 50(Suppl 1):74S–88S. doi:10.2967/jnumed.108.057208

    Article  PubMed  Google Scholar 

  53. Vriens D, Visser E, Lioe-Fee G-O, Oyen W (2010) Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging 37(7):1408–1425. doi:10.1007/s00259-009-1306-7

    Article  PubMed  Google Scholar 

  54. Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H (1993) Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 34(1):1–6

    CAS  PubMed  Google Scholar 

  55. Langen K-J, Braun U, Kops ER, Herzog H, Kuwert T, Nebeling B, Feinendegen LE (1993) The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 34(3):355–359

    CAS  PubMed  Google Scholar 

  56. Ceriani L, Suriano S, Ruberto T, Giovanella L (2011) Could different hydration protocols affect the quality of 18F-FDG PET/CT images? J Nucl Med Technol 39(2):77–82. doi:10.2967/jnmt.110.081265

    Article  PubMed  Google Scholar 

  57. Jackson RS, Schlarman TC, Hubble WL, Osman MM (2006) Prevalence and patterns of physiologic muscle uptake detected with whole-body 18F-FDG PET. J Nucl Med Technol 34(1):29–33

    PubMed  Google Scholar 

  58. Costelloe CM, Murphy WA, Chasen BA (2009) Musculoskeletal pitfalls in 18F-FDG PET/CT: pictorial review. Am J Roentgenol 193(3 Supplement):WS1–WS13. doi:10.2214/ajr.07.7138

    Article  Google Scholar 

  59. Osman MM, Muzaffar R, Altinyay ME, Teymouri C (2011) FDG dose extravasations in PET/CT: frequency and impact on SUV measurements. Front Oncol 1:41. doi:10.3389/fonc.2011.00041

    Article  PubMed  Google Scholar 

  60. Garcia CA, Van Nostrand D, Atkins F, Acio E, Butler C, Esposito G, Kulkarni K, Majd M (2006) Reduction of brown fat 2-deoxy-2-[F-18]fluoro-d-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol Imaging Biol 8(1):24–29. doi:10.1007/s11307-005-0030-3

    Article  PubMed  Google Scholar 

  61. Tatsumi M, Engles JM, Ishimori T, Nicely O, Cohade C, Wahl RL (2004) Intense (18)F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med 45(7):1189–1193

    CAS  PubMed  Google Scholar 

  62. Ouellet V, Labb S, Blondin D, Phoenix S, Gurin B, Haman F, Turcotte E, Richard D, Carpentier A (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122(2):545–552

    Article  PubMed  Google Scholar 

  63. Gelfand MJ, O'Hara SM, Curtwright LA, Maclean JR (2005) Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35(10):984–990. doi:10.1007/s00247-005-1505-8

    Article  PubMed  Google Scholar 

  64. Williams G, Kolodny GM (2008) Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol 190(5):1406–1409. doi:10.2214/ajr.07.3205

    Article  PubMed  Google Scholar 

  65. Hicks RJ, Binns D, Stabin MG (2001) Pattern of uptake and excretion of (18)F-FDG in the lactating breast. J Nucl Med 42(8):1238–1242

    CAS  PubMed  Google Scholar 

  66. Niederkohr RD, Rosenberg J, Shabo G, Quon A (2007) Clinical value of including the head and lower extremities in 18F-FDG PET/CT imaging for patients with malignant melanoma. Nucl Med Commun 28(9):688–695. doi:10.1097/MNM.0b013e32827420cc

    Article  PubMed  Google Scholar 

  67. Querellou S, Keromnes N, Abgral R, Sassolas B, Le Roux PY, Cavarec MB, Le Duc-Pennec A, Couturier O, Salaun PY (2010) Clinical and therapeutic impact of 18F-FDG PET/CT whole-body acquisition including lower limbs in patients with malignant melanoma. Nucl Med Commun 31(9):766–772. doi:10.1097/MNM.0b013e32833cb8b7

    Article  PubMed  Google Scholar 

  68. Pfluger T, Melzer HI, Schneider V, Fougere CL, Coppenrath E, Berking C, Bartenstein P, Weiss M (2011) PET/CT in malignant melanoma: contrast-enhanced CT versus plain low-dose CT. Eur J Nucl Med Mol Imaging 38(5):822–831. doi:10.1007/s00259-010-1702-z

    Article  PubMed  Google Scholar 

  69. Krug B, Crott R, Roch I, Lonneux M, Beguin C, Baurain JF, Pirson AS, Vander Borght T (2010) Cost-effectiveness analysis of FDG PET-CT in the management of pulmonary metastases from malignant melanoma. Acta Oncol 49(2):192–200. doi:10.3109/02841860903440254

    Article  PubMed  Google Scholar 

  70. Bastiaannet E, Uyl-de Groot CA, Brouwers AH, van der Jagt EJ, Hoekstra OS, Oyen W, Verzijlbergen F, van Ooijen B, Thompson JF, Hoekstra HJ (2012) Cost-effectiveness of adding FDG-PET or CT to the diagnostic work-up of patients with stage III melanoma. Ann Surg 255(4):771–776. doi:10.1097/SLA.0b013e31824a5742

    Article  PubMed  Google Scholar 

  71. Vidal M, Vidal-Sicart S, Torrents A, Perissinotti A, Navales I, Paredes P, Pons F (2012) Accuracy and reproducibility of lymphoscintigraphy for sentinel node detection in patients with cutaneous melanoma. J Nucl Med 53(8):1193–1199. doi:10.2967/jnumed.112.104463

    Article  PubMed  Google Scholar 

  72. Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schulthess GK (2002) PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 29(3):351–360

    Article  CAS  PubMed  Google Scholar 

  73. Osman MM, Cohade C, Nakamoto Y, Marshall LT, Leal JP, Wahl RL (2003) Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 44(2):240–243

    PubMed  Google Scholar 

  74. Metser U, Miller E, Lerman H, Even-Sapir E (2007) Benign nonphysiologic lesions with increased 18F-FDG uptake on PET/CT: characterization and incidence. Am J Roentgenol 189(5):1203–1210. doi:10.2214/ajr.07.2083

    Article  Google Scholar 

  75. Liu Y, Ghesani NV, Zuckier LS (2010) Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy. Semin Nucl Med 40(4):294–315. doi:10.1053/j.semnuclmed.2010.02.002

    Article  PubMed  Google Scholar 

  76. Kazama T, Swanston N, Podoloff DA, Macapinlac HA (2005) Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 32(12):1406–1411. doi:10.1007/s00259-005-1890-0

    Article  CAS  PubMed  Google Scholar 

  77. Klijanienko J, Petras S, De Bosschere L, Paulmier B, Le Tourneau C, Rodriguez J (2012) False-positive FDG PET/CT uptake in Warthin tumor in head and neck oncological patients confirmed by a fine needle aspiration. Diagn Cytopathol 40(3):282–284. doi:10.1002/dc.21640

    Article  PubMed  Google Scholar 

  78. Finkelstein SE, Carrasquillo JA, Hoffman JM, Galen B, Choyke P, White DE, Rosenberg SA, Sherry RM (2004) A prospective analysis of positron emission tomography and conventional imaging for detection of stage IV metastatic melanoma in patients undergoing metastasectomy. Ann Surg Oncol 11(8):731–738. doi:10.1245/aso.2004.01.023

    Article  PubMed  Google Scholar 

  79. Wagner JD, Schauwecker D, Davidson D, Logan T, Coleman JJ 3rd, Hutchins G, Love C, Wenck S, Daggy J (2005) Inefficacy of F-18 fluorodeoxy-d-glucose-positron emission tomography scans for initial evaluation in early-stage cutaneous melanoma. Cancer 104(3):570–579. doi:10.1002/cncr.21189

    Article  PubMed  Google Scholar 

  80. Cantorias MV, Figueroa SD, Quinn TP, Lever JR, Hoffman TJ, Watkinson LD, Carmack TL, Cutler CS (2009) Development of high-specific-activity (68)Ga-labeled DOTA-rhenium-cyclized alpha-MSH peptide analog to target MC1 receptors overexpressed by melanoma tumors. Nucl Med Biol 36(5):505–513. doi:10.1016/j.nucmedbio.2009.01.017

    Article  CAS  PubMed  Google Scholar 

  81. Wei L, Zhang X, Gallazzi F, Miao Y, Jin X, Brechbiel MW, Xu H, Clifford T, Welch MJ, Lewis JS, Quinn TP (2009) Melanoma imaging using (111)In-, (86)Y- and (68)Ga-labeled CHX-A″-Re(Arg11)CCMSH. Nucl Med Biol 36(4):345–354. doi:10.1016/j.nucmedbio.2009.01.007

    Article  CAS  PubMed  Google Scholar 

  82. Ren G, Liu S, Liu H, Miao Z, Cheng Z (2010) Radiofluorinated rhenium cyclized alpha-MSH analogues for PET imaging of melanocortin receptor 1. Bioconjug Chem 21(12):2355–2360. doi:10.1021/bc100391a

    Article  CAS  PubMed  Google Scholar 

  83. Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-l-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med 42(2):248–256

    CAS  PubMed  Google Scholar 

  84. de Vries EFJ, Luurtsema G, Brüssermann M, Elsinga PH, Vaalburg W (1999) Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fluoro-l-DOPA. Appl Radiat Isot 51(4):389–394. doi:10.1016/s0969-8043(99)00057-3

    Article  Google Scholar 

  85. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 12(13):3942–3949. doi:10.1158/1078-0432.ccr-06-0266

    Article  CAS  PubMed  Google Scholar 

  86. Yang J, Guo H, Miao Y (2010) Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging. Nucl Med Biol 37(8):873–883. doi:10.1016/j.nucmedbio.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  87. Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ (2003) 3′-18F-fluoro-3′-deoxy-l-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med 44(12):1927–1932

    CAS  PubMed  Google Scholar 

  88. Ribas A, Benz MR, Allen-Auerbach MS, Radu C, Chmielowski B, Seja E, Williams JL, Gomez-Navarro J, McCarthy T, Czernin J (2010) Imaging of CTLA4 blockade-induced cell replication with (18)F-FLT PET in patients with advanced melanoma treated with tremelimumab. J Nucl Med 51(3):340–346. doi:10.2967/jnumed.109.070946

    Article  CAS  PubMed  Google Scholar 

  89. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410. doi:10.1038/nrc3064

    Article  CAS  PubMed  Google Scholar 

  90. Wyss MT, Honer M, Schubiger PA, Ametamey SM (2006) NanoPET imaging of [(18)F]fluoromisonidazole uptake in experimental mouse tumours. Eur J Nucl Med Mol Imaging 33(3):311–318. doi:10.1007/s00259-005-1951-4

    Article  CAS  PubMed  Google Scholar 

  91. Rudman SM, Jameson MB, McKeage MJ, Savage P, Jodrell DI, Harries M, Acton G, Erlandsson F, Spicer JF (2011) A phase 1 study of AS1409, a novel antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin Cancer Res 17(7):1998–2005. doi:10.1158/1078-0432.ccr-10-2490

    Article  CAS  PubMed  Google Scholar 

  92. Dadachova E, Revskaya E, Sesay MA, Damania H, Boucher R, Sellers RS, Howell RC, Burns L, Thornton GB, Natarajan A, Mirick GR, DeNardo SJ, DeNardo GL, Casadevall A (2008) Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Cancer Biol Ther 7(7):1116–1127

    Article  CAS  PubMed  Google Scholar 

  93. Revskaya E, Jongco AM, Sellers RS, Howell RC, Koba W, Guimaraes AJ, Nosanchuk JD, Casadevall A, Dadachova E (2009) Radioimmunotherapy of experimental human metastatic melanoma with melanin-binding antibodies and in combination with dacarbazine. Clin Cancer Res 15(7):2373–2379. doi:10.1158/1078-0432.ccr-08-2376

    Article  CAS  PubMed  Google Scholar 

  94. Povoski SP, Hall NC, Martin EW Jr, Walker MJ (2008) Multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic activity in a case of occult recurrent metastatic melanoma. World J Surg Oncol 6:1. doi:10.1186/1477-7819-6-1

    Article  PubMed  Google Scholar 

  95. Franc BL, Mari C, Johnson D, Leong SP (2005) The role of a positron- and high-energy gamma photon probe in intraoperative localization of recurrent melanoma. Clin Nucl Med 30(12):787–791

    Article  PubMed  Google Scholar 

  96. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G (2012) Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med 53(6):928–938

    Google Scholar 

  97. Muller-Horvat C, Radny P, Eigentler TK, Schafer J, Pfannenberg C, Horger M, Khorchidi S, Nagele T, Garbe C, Claussen CD, Schlemmer HP (2006) Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer 42(3):342–350. doi:10.1016/j.ejca.2005.10.008

    Article  PubMed  Google Scholar 

  98. Pfannenberg C, Aschoff P, Schanz S, Eschmann SM, Plathow C, Eigentler TK, Garbe C, Brechtel K, Vonthein R, Bares R, Claussen CD, Schlemmer HP (2007) Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43(3):557–564. doi:10.1016/j.ejca.2006.11.014

    Article  PubMed  Google Scholar 

  99. Laurent V, Trausch G, Bruot O, Olivier P, Felblinger J, Regent D (2010) Comparative study of two whole-body imaging techniques in the case of melanoma metastases: advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT. Eur J Radiol 75(3):376–383. doi:10.1016/j.ejrad.2009.04.059

    Article  PubMed  Google Scholar 

  100. Dellestable P, Granel-Brocard F, Rat AC, Olivier P, Regent D, Schmutz JL (2011) Impact of whole body magnetic resonance imaging (MRI) in the management of melanoma patients, in comparison with positron emission tomography/computed tomography (TEP/CT) and CT. Ann Dermatol Venereol 138(5):377–383. doi:10.1016/j.annder.2011.02.023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Keu, K.V., Iagaru, A.H. (2014). The Clinical Use of PET/CT in the Evaluation of Melanoma. In: Thurin, M., Marincola, F. (eds) Molecular Diagnostics for Melanoma. Methods in Molecular Biology, vol 1102. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-727-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-727-3_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-726-6

  • Online ISBN: 978-1-62703-727-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics