Skip to main content

Isolation of Melanoma Cell Subpopulations Using Negative Selection

  • Protocol
  • First Online:
Molecular Diagnostics for Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1102))

Abstract

Melanomas are phenotypically and functionally heterogeneous tumors comprising of distinct subpopulations that drive disease progression and are responsible for resistance to therapy. Identification and characterization of such subpopulations are highly important to develop novel targeted therapies. However, this can be a challenging task as there is a lack of clearly defined markers to distinguish the melanoma subpopulations from a general tumor cell population. Also, there is a lack of optimal isolation methods and functional assays that can fully recapitulate their phenotype. Here we describe a method for isolating tumor cells from fresh human tumor tissue specimens using an antibody coupled magnetic bead sorting technique that is well established in our laboratory. Thus, melanoma cells are enriched by negative cell sorting and elimination of non-tumor cell population such as erythrocytes, leukocytes, and endothelial cells. Enriched unmodified tumor cells can be further used for phenotypic and functional characterization of melanoma subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  2. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  3. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    Article  PubMed  CAS  Google Scholar 

  4. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699

    Article  PubMed  CAS  Google Scholar 

  5. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  6. Gupta PB, Onder TT, Jiang G et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  PubMed  CAS  Google Scholar 

  7. Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  8. Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805:105–117

    PubMed  CAS  Google Scholar 

  9. Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594

    Article  PubMed  CAS  Google Scholar 

  10. Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699

    Article  PubMed  CAS  Google Scholar 

  11. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  12. Szakacs G, Annereau JP, Lababidi S et al (2004) Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6:129–137

    Article  PubMed  CAS  Google Scholar 

  13. Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  PubMed  CAS  Google Scholar 

  14. Monzani E, Facchetti F, Galmozzi E et al (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43:935–946

    Article  PubMed  CAS  Google Scholar 

  15. Taghizadeh R, Noh M, Huh YH et al (2011) CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells. PLoS One 5:e15183

    Article  Google Scholar 

  16. Elliott AM, Al-Hajj MA (2009) ABCB8 mediates doxorubicin resistance in melanoma cells by protecting the mitochondrial genome. Mol Cancer Res 7:79–87

    Article  PubMed  CAS  Google Scholar 

  17. Somasundaram R, Villanueva J, Herlyn M (2011) Will engineered T cells expressing CD20 scFv eradicate Melanoma? Mol Ther 19:638–640

    Article  PubMed  CAS  Google Scholar 

  18. Tedder TF, Engel P (1994) CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 15:450–454

    Article  PubMed  CAS  Google Scholar 

  19. Bittner M, Meltzer P, Chen Y et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  PubMed  CAS  Google Scholar 

  20. Fang D, Nguyen TK, Leishear K et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt P, Kopecky C, Hombach A, Zigrino P, Mauch C, Abken H (2011) Eradication of melanomas by targeted elimination of a minor subset of tumor cells. Proc Natl Acad Sci U S A 108:2474–2479

    Article  PubMed  CAS  Google Scholar 

  22. Pinc A, Somasundaram R, Wagner C et al (2012) Targeting CD20 in melanoma patients at high risk of disease recurrence. Mol Ther 20(5):1056–1062

    Article  PubMed  CAS  Google Scholar 

  23. Schlaak M, Schmidt P, Bangard C, Kurschat P, Mauch C, Abken H (2012) Regression of metastatic melanoma in a patient by antibody targeting of cancer stem cells. Oncotarget 3:22–30

    PubMed  Google Scholar 

  24. Neuzil J, Stantic M, Zobalova R et al (2007) Tumour-initiating cells vs. cancer “stem” cells and CD133: what’s in the name? Biochem Biophys Res Commun 355:855–859

    Article  PubMed  CAS  Google Scholar 

  25. Dembinski JL, Krauss S (2009) Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis 26(7):611–623

    Article  PubMed  CAS  Google Scholar 

  26. Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  Google Scholar 

  27. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  28. Salmaggi A, Boiardi A, Gelati M et al (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54:850–860

    Article  PubMed  Google Scholar 

  29. Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120

    PubMed  CAS  Google Scholar 

  30. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE (2008) Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 3:e3077

    Article  PubMed  Google Scholar 

  31. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  32. Frank NY, Margaryan A, Huang Y et al (2005) ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65:4320–4333

    Article  PubMed  CAS  Google Scholar 

  33. Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR (2007) Increased expression of stem cell markers in malignant melanoma. Mod Pathol 20:102–107

    Article  PubMed  CAS  Google Scholar 

  34. Rappa G, Fodstad O, Lorico A (2008) The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 26:3008–3017

    Article  PubMed  CAS  Google Scholar 

  35. Piras F, Perra MT, Murtas D et al (2010) The stem cell marker nestin predicts poor prognosis in human melanoma. Oncol Rep 23:17–24

    PubMed  Google Scholar 

  36. Fusi A, Reichelt U, Busse A et al (2011) Expression of the stem cell markers nestin and CD133 on circulating melanoma cells. J Invest Dermatol 131:487–494

    Article  PubMed  CAS  Google Scholar 

  37. Sharma BK, Manglik V, O’Connell M et al (2012) Clonal dominance of CD133+ subset population as risk factor in tumor progression and disease recurrence of human cutaneous melanoma. Int J Oncol 41(5):1570–1576

    PubMed  Google Scholar 

  38. Lai CY, Schwartz BE, Hsu MY (2012) CD133+ Melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res 72(19):5111–5118

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Sakariassen PO, Tsinkalovsky O et al (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768

    Article  PubMed  CAS  Google Scholar 

  40. Quintana E, Shackleton M, Foster HR et al (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18:510–523

    Article  PubMed  CAS  Google Scholar 

  41. Joo KM, Kim SY, Jin X et al (2008) Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 88:808–815

    Article  PubMed  CAS  Google Scholar 

  42. Boiko AD, Razorenova OV, van de Rijn M et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137

    Article  PubMed  CAS  Google Scholar 

  43. Held MA, Curley DP, Dankort D, McMahon M, Muthusamy V, Bosenberg MW (2010) Characterization of melanoma cells capable of propagating tumors from a single cell. Cancer Res 70:388–397

    Article  PubMed  CAS  Google Scholar 

  44. Sharma SV, Lee DY, Li B et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    Article  PubMed  CAS  Google Scholar 

  45. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Slipicevic, A., Somasundaram, R., Sproesser, K., Herlyn, M. (2014). Isolation of Melanoma Cell Subpopulations Using Negative Selection. In: Thurin, M., Marincola, F. (eds) Molecular Diagnostics for Melanoma. Methods in Molecular Biology, vol 1102. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-727-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-727-3_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-726-6

  • Online ISBN: 978-1-62703-727-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics