Skip to main content

Sorghum Genetic Transformation by Particle Bombardment

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1099))

Abstract

Particle bombardment transformation describes the acceleration of high-velocity microparticles coated with exotic genes through the plant-protective cell walls, in order for the introduced genes to be integrated into the host genome. This technique has proven to be an effective and versatile approach towards plant genetic modification in preceding decades. Particle bombardment has been successfully applied to cereals including rice, maize, wheat, barley, and sorghum. Historically, sorghum has been considered as one of the most recalcitrant major crops with regard to successful genetic transformation; however, tremendous progress has been made in recent years. Transformation efficiency by particle bombardment has now improved from approximately 1 % to in excess of 20 % utilizing an optimized tissue culture and DNA delivery system. The protocol described in this chapter routinely generates transformants at 10–25 % efficiency within sorghum genotype Tx430. The process generally takes 11–16 weeks from initiation of immature embryos to planting of transformants. This protocol covers the operation of both the Bio-Rad PDS-1000/He System and particle inflow gun. Three factors are crucial to an efficient particle bombardment transformation system: (1) an efficient tissue culture system, (2) a highly efficient DNA delivery system, and (3) an effective selection strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Varshney RK, Bansal KC, Aggarwal PK et al (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371

    Article  PubMed  CAS  Google Scholar 

  2. Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    Article  PubMed  CAS  Google Scholar 

  3. Karami O, Esna-Ashari M, Kurdistani GK et al (2009) Agrobacterium-mediated genetic transformation of plants: the role of host. Biol Plant 53:201–212

    Article  CAS  Google Scholar 

  4. Altpeter F, Niranjan B, Beachy R et al (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  5. Elghabi Z, Ruf S, Bock R (2011) Biolistic co-transformation of the nuclear and plastid genomes. Plant J 67:941–948

    Article  PubMed  CAS  Google Scholar 

  6. Vain P, Keen N, Murillo J et al (1993) Development of the particle inflow gun. Plant Cell Tissue Organ Cult 33:237–246

    Article  CAS  Google Scholar 

  7. Hagio T, Blowers AD, Earle ED (1991) Stable transformation of sorghum cell-cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep 10:260–264

    Article  PubMed  CAS  Google Scholar 

  8. Birch RG, Franks T (1991) Development and optimization of microprojectile systems for plant genetic-transformation. Aust J Plant Physiol 18:453–469

    Article  CAS  Google Scholar 

  9. Rech EL, Vianna GR, Aragao FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418

    Article  PubMed  CAS  Google Scholar 

  10. Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192

    Article  CAS  Google Scholar 

  11. Zhu H, Muthukrishnan S, Krishnaveni S et al (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252

    CAS  Google Scholar 

  12. Lowe BA, Prakash S, Way M et al (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 18:831–840

    Article  PubMed  CAS  Google Scholar 

  13. Yao Q, Cong L, Chang JL et al (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp Bot 57:3737–3746

    Article  PubMed  CAS  Google Scholar 

  14. Shou HX, Frame BR, Whitham SA et al (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  15. Dai SH, Zheng P, Marmey P et al (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  16. Liu GQ, Godwin ID (2012) Highly efficient sorghum transformation. Plant Cell Rep 31:999–1007

    Article  PubMed  Google Scholar 

  17. Um MO, Park TL, Kim YJ et al (2007) Particle bombardment-mediated transformation of barley with an Arabidopsis NDPK2 cDNA. Plant Biotechnol Rep 1:71–77

    Article  Google Scholar 

  18. Wang DX, Zhao Q, Zhu DY et al (2006) Particle-bombardment-mediated co-transformation of maize with a lysine rich protein gene (sb401) from potato. Euphytica 150:75–85

    Article  CAS  Google Scholar 

  19. Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580

    PubMed  CAS  Google Scholar 

  20. Tang K, Tinjuangjun P, Xu Y et al (1999) Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 208:552–563

    Article  CAS  Google Scholar 

  21. Casas AM, Kononowicz AK, Zehr UB et al (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 90:11212–11216

    Article  PubMed  CAS  Google Scholar 

  22. Zhao ZY, Cai T, Taqliani L et al (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  PubMed  CAS  Google Scholar 

  23. Gurel S, Gurel E, Kaur R et al (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444

    Article  PubMed  CAS  Google Scholar 

  24. Finer JJ, Vain P, Jones MW et al (1992) Development of the particle inflow gun for DNA delivery to plant-cells. Plant Cell Rep 11:323–328

    Article  PubMed  CAS  Google Scholar 

  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  26. Sticklen MB, Oraby HF (2005) Invited review: Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell Dev Biol Plant 41:187–200

    Article  CAS  Google Scholar 

  27. O’Kennedy MM, Stark HC, Dube N (2011) Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols, vol 710, Methods in molecular biology. Humana Press Inc., Totowa, NJ, pp 343–354

    Chapter  Google Scholar 

  28. Russell JA, Roy MK, Sanford JC (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol 98:1050–1056

    Article  PubMed  CAS  Google Scholar 

  29. Frame BR, Zhang H, Cocciolone SM et al (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36:21–29

    Article  Google Scholar 

  30. Carvalho CHS, Zehr UB, Gunaratna N et al (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    Article  CAS  Google Scholar 

  31. Kumar V, Campbell LM, Rathore KS (2011) Rapid recovery- and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum. Plant Cell Tissue Organ Cult 104:137–146

    Article  CAS  Google Scholar 

  32. Vain P, Worland B, Clarke MC (1998) Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-I Delta D86) for nematode resistance in transgenic rice plants. Theor Appl Genet 96:266–271

    Article  CAS  Google Scholar 

  33. Howe A, Sato S, Dweikat I (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  PubMed  CAS  Google Scholar 

  34. Tadesse Y, Sagi L, Swennen R (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Cult 75:1–18

    Article  CAS  Google Scholar 

  35. Ahmad N, Sant R, Bokan M et al (2012) Expression pattern of the alpha-kafirin promoter coupled with a signal peptide from Sorghum bicolor L. Moench. J Biomed Biotechnol. doi:10.1155/2012/752391

    PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Australian Research Council (ARC) and Pacific Seeds Ltd. Pty. for funding the Linkage project LP0883808. We are grateful to Sharon Beth Williams, Siti Atiqah Zainul Alam, Azelah Mustapha, and Yue Sun for their efforts during the editing process.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, G., Campbell, B.C., Godwin, I.D. (2014). Sorghum Genetic Transformation by Particle Bombardment. In: Henry, R., Furtado, A. (eds) Cereal Genomics. Methods in Molecular Biology, vol 1099. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-715-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-715-0_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-714-3

  • Online ISBN: 978-1-62703-715-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics