Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1097))

Abstract

We describe different tools and approaches for RNA–RNA interaction prediction. Recognition of ncRNA targets is predominantly governed by two principles, namely the stability of the duplex between the two interacting RNAs and the internal structure of both mRNA and ncRNA. Thus, approaches can be distinguished into different major categories depending on how they consider inter- and intramolecular structure. The first class completely neglects the internal structure and measures only the stability of the duplex. The second class of approaches abstracts from specific intramolecular structures and uses an ensemble-based approach to calculate the effect of internal structure on a putative binding site, thus measuring the accessibility of the binding sites.

Since accessibility-based approaches can handle only one continuous interaction site, two addition types of approaches were introduced which predict a joint structure for the interacting RNAs. Since this problem is NP-complete, the approaches can handle only a restricted class of joint structures. The first are co-folding approaches, which predict a joint structure that is nested when the both sequences are concatenated. The last and most complex class of approaches impose only the restriction that they discard zipper-like structures. Finally, we will discuss the use of conservation information in RNA-target prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The precise definition of NP-complete is more complex. NP is a class of problems, which are currently believed to be different from the class P of problems that can be solved in polynomial time. Unless NP = P (which is believed to be very unlikely), there cannot be an algorithm that exactly solves the general interaction problem in polynomial time for all instances. However, there might be algorithms that solve the problem in reasonable time for most practical instances.

References

  1. Malmgren C, Wagner EG, Ehresmann C, Ehresmann B, Romby P (1997) Antisense RNA control of plasmid R1 replication. The dominant product of the antisense rna-mrna binding is not a full RNA duplex. J Biol Chem 272(19):12508–12512

    CAS  PubMed  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  3. Gerlach W, Giegerich R (2006) GUUGle: a utility for fast exact matching under RNA complementary rules including G-U base pairing. Bioinformatics 22(6):762–764

    Article  CAS  PubMed  Google Scholar 

  4. Tjaden B, Goodwin SS, Opdyke JA, Guillier M, Fu DX, Gottesman S, Storz G (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34(9): 2791–2802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P (2007) Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res 35(3):962–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294(5543):849–852

    Google Scholar 

  7. Zuker M (1994) Prediction of RNA secondary structure by energy minimization. Methods Mol Biol 25:267–294

    CAS  PubMed  Google Scholar 

  8. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte Chemie 125:167–188

    Article  CAS  Google Scholar 

  9. Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36(Web Server issue): W70–W74

    Google Scholar 

  11. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288(5):911–940

    Article  CAS  PubMed  Google Scholar 

  12. Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24(22):2657–2663

    Article  CAS  PubMed  Google Scholar 

  13. Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci USA 87(6):2264–2268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Waterman MS (1995) Introduction to computational biology - maps, sequences and genomes. London, England

    Book  Google Scholar 

  15. Pearson WR, Wood TC (2001) Statistical significance in biological sequence comparison. In: Balding DJ, Bishop M, Cannings C (eds) Handbook of statistical genetics. Chichester, UK, pp 39–65

    Google Scholar 

  16. Andronescu M, Chuan Zhang Z, Condon A (2005) Secondary structure prediction of interacting RNA molecules. J Mol Biol 345(5):987–1001

    Article  CAS  PubMed  Google Scholar 

  17. Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL (2006a) Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce NA (2007) Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49(1):65–88

    Article  Google Scholar 

  19. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29(6–7):1105–1119

    Article  CAS  PubMed  Google Scholar 

  20. Cao Y, Zhao Y, Cha L, Ying X, Wang L, Shao N, Li W (2009) sRNATarget: a web server for prediction of bacterial sRNA targets. Bioinformation 3(8):364–366

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zhao Y, Li H, Hou Y, Cha L, Cao Y, Wang L, Ying X, Li W (2008) Construction of two mathematical models for prediction of bacterial sRNA targets. Biochem Biophys Res Comm 372(2):346–350

    Article  CAS  PubMed  Google Scholar 

  22. Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22(10):1177–1182

    Article  PubMed  Google Scholar 

  23. Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24(24):2849–2856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bernhart SH, Hofacker IL, Stadler PF (2006b) Local RNA base pairing probabilities in large sequences. Bioinformatics 22(5): 614–615

    Article  CAS  PubMed  Google Scholar 

  25. Bompfünewerer AF, Backofen R, Bernhart SH, Hertel J, Hofacker IL, Stadler PF, Will S (2008) Variations on RNA folding and alignment: lessons from Benasque. J Math Biol 56(1–2):129–144

    PubMed  Google Scholar 

  26. Chitsaz H, Backofen R, Cenk Sahinalp S (2009a) biRNA: Fast RNA–RNA binding sites prediction. In: Salzberg S, Warnow T (eds) Proc. of the 9th workshop on algorithms in bioinformatics (WABI), vol 5724 of Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 25–36

    Google Scholar 

  27. Salari R, Backofen R, Cenk Sahinalp S (2010a) Fast prediction of RNA-RNA interaction. Algorithms Mol Biol 5:5

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mückstein U, Tafer H, Bernhart SH, Hernandez-Rosales M, Vogel J, Stadler PF, Hofacker IL (2008) Translational control by RNA–RNA interaction: Improved computation of RNA–RNA binding thermodynamics. In: Elloumi M, Küng J, Linial M, Murphy R, Schneider K, Toma C (eds) Bioinformatics research and development, vol 13 of Communications in computer and information science. Springer, Berlin/Heidelberg, pp 114–127

    Google Scholar 

  29. Alkan C, Karakoç E, Nadeau JH, Cenk Sahinalp S, Zhang K (2006) RNA-RNA interaction prediction and antisense RNA target search. J Comput Biol 13(2):267–282

    Article  CAS  PubMed  Google Scholar 

  30. Pervouchine DD (2004) IRIS: intermolecular RNA interaction search. Genome Inform 15(2):92–101

    CAS  PubMed  Google Scholar 

  31. Chitsaz H, Salari R, Cenk Sahinalp S, Backofen R (2009b) A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25(12):i365–i373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Huang FWD, Qin J, Reidys CM, Stadler PF (2009) Partition function and base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics 25(20):2646–2654

    Article  CAS  PubMed  Google Scholar 

  33. Salari R, Möhl M, Will S, Cenk Sahinalp S, Backofen R (2010b) Time and space efficient RNA-RNA interaction prediction via sparse folding. In: Berger B (ed) Proc of RECOMB 2010, vol 6044 of Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 473–490

    Google Scholar 

  34. Wexler Y, Ben-Zaken Zilberstein C, Ziv-Ukelson M (2006) A study of accessible motifs and rna folding complexity. In: Apostolico A, Guerra C, Istrail S, Pevzner PA, Waterman MS (eds) Proc. of the tenth annual international conferences on computational molecular biology (RECOMB’06), vol 3909 of Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 473–487

    Google Scholar 

  35. Ziv-Ukelson M, Gat-Viks I, Wexler Y, Shamir R (2008) A faster algorithm for RNA co-folding. In: Crandall KA, Lagergren J (eds) WABI 2008, vol 5251 of Lecture notes in computer science. Berlin Heidelberg, pp 174–185

    Google Scholar 

  36. Backofen R, Tsur D, Zakov S, Ziv-Ukelson M (2009) Sparse RNA folding: Time and space efficient algorithms. In: Kucherov G, Ukkonen E (eds) Proc. 20th symp. combinatorial pattern matching, vol 5577 of LNCS. Springer, pp 249–262

    Google Scholar 

  37. Richter AS, Schleberger C, Backofen R, Steglich C (2010) Seed-based IntaRNA prediction combined with GFP-reporter system identifies mRNA targets of the small RNA Yfr1. Bioinformatics 26(1):1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sonnleitner E, Gonzalez N, Sorger-Domenigg T, Heeb S, Richter AS, Backofen R, Williams P, Huttenhofer A, Haas D, Blasi U (2011) The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol 80(4):868–885

    Article  CAS  PubMed  Google Scholar 

  39. Richter AS, Backofen R (2012) Accessibility and conservation - general features of bacterial small RNA-mRNA interactions? RNA Biol 9(7):954–965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31(13):3423–3428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319(5):1059–1066

    Article  CAS  PubMed  Google Scholar 

  42. Seemann SE, Gorodkin J, Backofen R (2008) Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. Nucleic Acids Res 36(20): 6355–6362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Seemann SE, Richter AS, Gesell T, Backofen R, Gorodkin J (2011) PETcofold: predicting conserved interactions and structures of two multiple alignments of RNA sequences. Bioinformatics 27(2):211–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Seemann SE, Richter AS, Gorodkin J, Backofen R (2010) Hierarchical folding of multiple sequence alignments for the prediction of structures and RNA-RNA interactions. Algorithms Mol Biol 5:22

    Article  PubMed Central  PubMed  Google Scholar 

  45. Li AX, Marz M, Qin J, Reidys CM (2011) RNA-RNA interaction prediction based on multiple sequence alignments. Bioinformatics 27(4):456–463

    Article  CAS  PubMed  Google Scholar 

  46. Sharma CM, Darfeuille F, Plantinga TH, Vogel J (2007) A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 21(21):2804– 2817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Argaman L, Altuvia S (2000) fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J Mol Biol 300(5):1101–1112

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Backofen, R. (2014). Computational Prediction of RNA–RNA Interactions. In: Gorodkin, J., Ruzzo, W. (eds) RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Methods in Molecular Biology, vol 1097. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-709-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-709-9_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-708-2

  • Online ISBN: 978-1-62703-709-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics