Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1097))

  • 8052 Accesses

Abstract

Manual editing of RNA structural alignments may be considered more art than science, since it still requires an expert biologist to take multiple levels of information into account and be slightly creative when constructing high-quality alignments. Even though the task is rather tedious, it is rewarded by great insight into the evolution of structure and function of your favorite RNA molecule. In this chapter I will review the methods and considerations that go into constructing RNA structural alignments at the secondary and tertiary structure level; introduce software, databases, and algorithms that have proven useful in semiautomating the work process; and suggest future directions towards full automatization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pace NR, Thomas BC, Woese CR (1999) Probing RNA structure, function, and history by comparative analysis. The RNA world, 2nd edn. Gesteland RF, Cech TR, Atkins JF (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 113–141

    Google Scholar 

  2. Ehresmann C et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15(22):9109–9128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ban N, Nissen P, Hansen J, Moore P, Steitz T (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289(5481):905–920

    Article  CAS  PubMed  Google Scholar 

  4. Wimberly BT et al (2000) Structure of the 30S ribosomal subunit. Nature 407(6802): 327–339

    Article  CAS  PubMed  Google Scholar 

  5. Olsen GJ, Larsen N, Woese CR (1991) The ribosomal RNA database project. Nucleic Acids Res 19 Suppl:2017–2021

    Google Scholar 

  6. Brown JW (1999) The ribonuclease P database. Nucleic Acids Res 27(1):314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zwieb C, Larsen N, Wower J (1998) The tmRNA database (tmRDB). Nucleic Acids Res 26(1):166–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Williams KP, Bartel DP (1998) The tmRNA website. Nucleic Acids Res 26(1):163–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Larsen N, Zwieb C (1993) The signal recognition particle database (SRPDB). Nucleic Acids Res 21(13):3019–3020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31(1): 439–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Leontis NB, Westhof E (1998) Conserved geometrical base-pairing patterns in RNA. Q Rev Biophys 31(4):399–455

    Article  CAS  PubMed  Google Scholar 

  12. Waugh A et al (2002) RNAML: a standard syntax for exchanging RNA information. RNA 8(6):707–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Brown JW et al (2009) The RNA structure alignment ontology. RNA 15(9): 1623–1631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. De Rijk P, De Wachter R (1993) DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci 9(6):735–740

    PubMed  Google Scholar 

  15. De Oliveira T, Miller R, Tarin M, Cassol S (2003) An integrated genetic data environment (GDE)-based LINUX interface for analysis of HIV-1 and other microbial sequences. Bioinformatics 19(1):153–154

    Article  PubMed  Google Scholar 

  16. Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20(3):426–427

    Article  CAS  PubMed  Google Scholar 

  17. Luck R, Graf S, Steger G (1999) ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res 27(21):4208–4217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ludwig W et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Griffiths-Jones S (2005) RALEE—RNA ALignment editor in Emacs. Bioinformatics 21(2):257–259

    Article  CAS  PubMed  Google Scholar 

  20. Seibel PN, Muller T, Dandekar T, Schultz J, Wolf M (2006) 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7:498

    Article  PubMed Central  PubMed  Google Scholar 

  21. Andersen ES et al (2007) Semiautomated improvement of RNA alignments. RNA 13(11):1850–1859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jossinet F, Westhof E (2005) Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21(15):3320–3321

    Article  CAS  PubMed  Google Scholar 

  23. Stombaugh J, Widmann J, McDonald D, Knight R (2011) Boulder ALignment Editor (ALE): a web-based RNA alignment tool. Bioinformatics 27(12):1706–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Widmann J et al (2012) RNASTAR: an RNA STructural Alignment Repository that provides insight into the evolution of natural and artificial RNAs. RNA 18(7):1319–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gorodkin J, Zwieb C, Knudsen B (2001) Semi-automated update and cleanup of structural RNA alignment databases. Bioinformatics 17(7):642–645

    Article  CAS  PubMed  Google Scholar 

  26. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Knudsen B, Hein J (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15(6):446–454

    Article  CAS  PubMed  Google Scholar 

  28. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31(13):3423–3428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319(5):1059–1066

    Article  CAS  PubMed  Google Scholar 

  30. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31(13):3423–3428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Havgaard JH, Lyngso RB, Stormo GD, Gorodkin J (2005) Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21(9):1815–1824

    Article  CAS  PubMed  Google Scholar 

  32. Hofacker IL, Bernhart SH, Stadler PF (2004) Alignment of RNA base pairing probability matrices. Bioinformatics 20(14):2222– 2227

    Article  CAS  PubMed  Google Scholar 

  33. Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317(2):191–203

    Article  CAS  PubMed  Google Scholar 

  34. Mathews DH (2005) Predicting a set of minimal free energy RNA secondary structures common to two sequences. Bioinformatics 21(10):2246–2253

    Article  CAS  PubMed  Google Scholar 

  35. Holmes I (2005) Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics 6(1):73

    Article  PubMed Central  PubMed  Google Scholar 

  36. Holmes I, Rubin GM (2002) Pairwise RNA structure comparison with stochastic context-free grammars. Pac Symp Biocomput: 163–174

    Google Scholar 

  37. Reeder J, Giegerich R (2005) Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus structure prediction. Bioinformatics 21(17):3516–3523

    Article  CAS  PubMed  Google Scholar 

  38. Yao Z, Weinberg Z, Ruzzo WL (2006) CMfinder—a covariance model based RNA motif finding algorithm. Bioinformatics 22(4):445–452

    Article  CAS  PubMed  Google Scholar 

  39. Torarinsson E, Havgaard JH, Gorodkin J (2007) Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23:926–932

    Google Scholar 

  40. Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30(16):3497–3531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Andersen ES (2010) Prediction and design of DNA and RNA structures. New Biotechnol 27(3):184–193

    Article  CAS  Google Scholar 

  42. Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 16(4):531–543

    Article  CAS  PubMed  Google Scholar 

  43. Geary C, Baudrey S, Jaeger L (2008) Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Res 36(4):1138–1152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jaeger L, Verzemnieks EJ, Geary C (2009) The UA handle: a versatile submotif in stable RNA architectures. Nucleic Acids Res 37(1): 215–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Geary C, Chworos A, Jaeger L (2011) Promoting RNA helical stacking via A-minor junctions. Nucleic Acids Res 39(3):1066– 1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Leontis N, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30(16):3497–3531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Andersen, E.S. (2014). The Art of Editing RNA Structural Alignments. In: Gorodkin, J., Ruzzo, W. (eds) RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Methods in Molecular Biology, vol 1097. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-709-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-709-9_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-708-2

  • Online ISBN: 978-1-62703-709-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics