Skip to main content

Hydroxymethylated DNA Immunoprecipitation (hmeDIP)

  • Protocol
  • First Online:
Functional Analysis of DNA and Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1094))

Abstract

5-hydroxymethylcytosine (5hmC) was recently identified as an abundant epigenetic mark in mammals. Subsequent research has implicated 5hmC in normal mammalian development and disease pathogenesis in humans. Many of the techniques commonly used to assay for canonical 5-methylcytosine (5mC) cannot distinguish between 5hmC and 5mC. The development of antibodies specific to 5hmC has allowed for specific enrichment of DNA fragments containing 5hmC. Hydroxymethylated DNA immunoprecipitation (hmeDIP) has become an invaluable tool for determining both locus-specific and genome-wide profiles of 5hmC in mammalian DNA. Here, we describe the use of hmeDIP to characterize the relative abundance of 5hmC at loci in mammalian DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  PubMed  CAS  Google Scholar 

  2. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed  CAS  Google Scholar 

  3. Globisch D, Munzel M, Muller M et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367

    Article  PubMed  CAS  Google Scholar 

  4. Jin SG, Wu X, Li AX et al (2011) Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 39:5015–5024

    Article  PubMed  CAS  Google Scholar 

  5. Nestor CE, Ottaviano R, Reddington J et al (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467–477

    Article  PubMed  CAS  Google Scholar 

  6. Szwagierczak A, Bultmann S, Schmidt CS et al (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 38:e181

    Article  PubMed  Google Scholar 

  7. Ito S, D’Alessio AC, Taranova OV et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  PubMed  CAS  Google Scholar 

  8. Koh KP, Yabuuchi A, Rao S et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8:200–213

    Article  PubMed  CAS  Google Scholar 

  9. Huang Y, Pastor WA, Shen Y et al (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5:e8888

    Article  PubMed  Google Scholar 

  10. Jin SG, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38:e125

    Article  PubMed  Google Scholar 

  11. Nestor C, Ruzov A, Meehan R et al (2010) Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 48:317–319

    Article  PubMed  CAS  Google Scholar 

  12. Ficz G, Branco MR, Seisenberger S et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402

    Article  PubMed  CAS  Google Scholar 

  13. Wu H, D’Alessio AC, Ito S et al (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25:679–684

    Article  PubMed  CAS  Google Scholar 

  14. Stroud H, Feng S, Morey Kinney S et al (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54

    Article  PubMed  CAS  Google Scholar 

  15. Matarese F, Carrillo-de Santa Pau E, Stunnenberg HG (2011) 5-Hydroxymethylcytosine: a new kid on the epigenetic block? Mol Syst Biol 7:562

    Article  PubMed  Google Scholar 

  16. Mohn F, Weber M, Schubeler D et al (2009) Methylated DNA immunoprecipitation (MeDIP). Method Mol Biol 507:55–64

    Article  CAS  Google Scholar 

  17. Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  PubMed  CAS  Google Scholar 

  18. Kinney SM, Chin HG, Vaisvila R et al (2011) Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286:24685–24693

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. James P. Reddington for critical reading of this manuscript and Raffaele Ottaviano for helpful advice. We thank members of the Meehan lab for advice on the development and application of 5hmC protocols. Work in RM’s lab is supported by the Medical Research Council, by the BBSRC, and by the Innovative Medicines Initiative Joint Undertaking (IMI JU) under grant agreement number 115001 (MARCAR project). URL: http://www.imi-marcar.eu/.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Nestor, C.E., Meehan, R.R. (2014). Hydroxymethylated DNA Immunoprecipitation (hmeDIP). In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics