Skip to main content

Investigating 5-Hydroxymethylcytosine (5hmC): The State of the Art

  • Protocol
  • First Online:
Functional Analysis of DNA and Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1094))

Abstract

The discovery of 5-hydroxymethylcytosine (5hmC) as an abundant base in mammalian genomes has excited the field of epigenetics, and stimulated an intense period of research activity aimed at decoding its biological significance. However, initial research efforts were hampered by a lack of assays capable of specifically detecting 5hmC. Consequently, the last 3 years have seen the development of a plethora of new techniques designed to detect both global levels and locus-specific profiles of 5hmC in mammalian genomes. This research effort has culminated in the recent publication of two complementary techniques for quantitative, base-resolution mapping of 5hmC in mammalian genomes, the first true mammalian hydroxymethylomes. Here, we review the techniques currently available to researchers studying 5hmC, discuss their advantages and disadvantages, and explore the technical hurdles which remain to be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  2. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  PubMed  CAS  Google Scholar 

  3. Okano M, Bell DW, Haber DA et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  4. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  PubMed  CAS  Google Scholar 

  5. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed  CAS  Google Scholar 

  6. Ficz G, Branco MR, Seisenberger S et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402

    Article  PubMed  CAS  Google Scholar 

  7. Wu H, D’Alessio AC, Ito S et al (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25:679–684

    Article  PubMed  CAS  Google Scholar 

  8. Nestor CE, Ottaviano R, Reddington J et al (2011) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467–477

    Article  PubMed  Google Scholar 

  9. Stroud H, Feng S, Morey Kinney S et al (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54

    Article  PubMed  CAS  Google Scholar 

  10. Jin SG, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38:e125

    Article  PubMed  Google Scholar 

  11. Valinluck V, Tsai HH, Rogstad DK et al (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32:4100–4108

    Article  PubMed  CAS  Google Scholar 

  12. Fraga MF, Ballestar E, Montoya G et al (2003) The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res 31:1765–1774

    Article  PubMed  CAS  Google Scholar 

  13. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    PubMed  CAS  Google Scholar 

  14. Saito M, Ishikawa F (2002) The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J Biol Chem 277:35434–35439

    Article  PubMed  CAS  Google Scholar 

  15. Yildirim O, Li R, Hung JH et al (2011) Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147:1498–1510

    Article  PubMed  CAS  Google Scholar 

  16. Hajkova P, Erhardt S, Lane N et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  PubMed  CAS  Google Scholar 

  17. Mayer W, Niveleau A, Walter J et al (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    Article  PubMed  CAS  Google Scholar 

  18. Oswald J, Engemann S, Lane N et al (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478

    Article  PubMed  CAS  Google Scholar 

  19. Saitou M, Kagiwada S, Kurimoto K (2012) Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 139:15–31

    Article  PubMed  CAS  Google Scholar 

  20. Bhutani N, Brady JJ, Damian M et al (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463:1042–1047

    Article  PubMed  CAS  Google Scholar 

  21. Guo JU, Su Y, Zhong C et al (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    Article  PubMed  CAS  Google Scholar 

  22. Kangaspeska S, Stride B, Metivier R et al (2008) Transient cyclical methylation of promoter DNA. Nature 452:112–115

    Article  PubMed  CAS  Google Scholar 

  23. Martinowich K, Hattori D, Wu H et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    Article  PubMed  CAS  Google Scholar 

  24. Metivier R, Gallais R, Tiffoche C et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50

    Article  PubMed  CAS  Google Scholar 

  25. Bruniquel D, Schwartz RH (2003) Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 4:235–240

    Article  PubMed  CAS  Google Scholar 

  26. Ma DK, Jang MH, Guo JU et al (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323:1074–1077

    Article  PubMed  CAS  Google Scholar 

  27. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  PubMed  CAS  Google Scholar 

  28. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620

    Article  PubMed  CAS  Google Scholar 

  29. Iqbal K, Jin SG, Pfeifer GP et al (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108:3642–3647

    Article  PubMed  CAS  Google Scholar 

  30. Wossidlo M, Nakamura T, Lepikhov K et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    Article  PubMed  Google Scholar 

  31. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194

    Article  PubMed  CAS  Google Scholar 

  32. Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67:946–950

    Article  PubMed  CAS  Google Scholar 

  33. Nabel CS, Jia H, Ye Y et al (2012) AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat Chem Biol 8:751–758

    Article  PubMed  CAS  Google Scholar 

  34. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  PubMed  CAS  Google Scholar 

  35. Huang Y, Pastor WA, Shen Y et al (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5:e8888

    Article  PubMed  Google Scholar 

  36. Nestor C, Ruzov A, Meehan R et al (2010) Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 48:317–319

    Article  PubMed  CAS  Google Scholar 

  37. Hayatsu H, Shiragami M (1979) Reaction of bisulfite with the 5-hydroxymethyl group in pyrimidines and in phage DNAs. Biochemistry 18:632–637

    Article  PubMed  CAS  Google Scholar 

  38. Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    CAS  Google Scholar 

  39. Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139:1895–1902

    Article  PubMed  CAS  Google Scholar 

  40. Williams K, Christensen J, Helin K (2012) DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep 13:28–35

    Article  CAS  Google Scholar 

  41. Globisch D, Munzel M, Muller M et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367

    Article  PubMed  CAS  Google Scholar 

  42. Nestor CE, Ottaviano R, Reddington J et al (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467–477

    Article  PubMed  CAS  Google Scholar 

  43. Szwagierczak A, Bultmann S, Schmidt CS et al (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 38:e181

    Article  PubMed  Google Scholar 

  44. Weisenberger DJ, Campan M, Long TI et al (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33:6823–6836

    Article  PubMed  CAS  Google Scholar 

  45. Ehrlich M, Gama-Sosa MA, Huang LH et al (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709–2721

    Article  PubMed  CAS  Google Scholar 

  46. Ruzov A, Tsenkina Y, Serio A et al (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 21:1332–1342

    Article  PubMed  CAS  Google Scholar 

  47. Thomson JP, Lempiäinen H, Hackett J et al (2012) Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome. Genome Biol 13(10):R93

    Article  PubMed  CAS  Google Scholar 

  48. Haffner MC, Chaux A, Meeker AK et al (2011) Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2:627–637

    PubMed  Google Scholar 

  49. Szulwach KE, Li X, Li Y et al (2011) Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet 7:e1002154

    Article  PubMed  CAS  Google Scholar 

  50. Terragni J, Bitinaite J, Zheng Y et al (2012) Biochemical characterization of recombinant beta-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes. Biochemistry 51:1009–1019

    Article  PubMed  CAS  Google Scholar 

  51. Williams K, Christensen J, Pedersen MT et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343–348

    Article  PubMed  CAS  Google Scholar 

  52. Pastor WA, Pape UJ, Huang Y et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394–397

    Article  PubMed  CAS  Google Scholar 

  53. Robertson AB, Dahl JA, Vagbo CB et al (2011) A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 39:e55

    Article  PubMed  CAS  Google Scholar 

  54. Song CX, Szulwach KE, Fu Y et al (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72

    Article  PubMed  CAS  Google Scholar 

  55. Robertson AB, Dahl JA, Ougland R et al (2012) Pull-down of 5-hydroxymethylcytosine DNA using JBP1-coated magnetic beads. Nat Protoc 7:340–350

    Article  PubMed  CAS  Google Scholar 

  56. Ko M, Huang Y, Jankowska AM et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843

    Article  PubMed  CAS  Google Scholar 

  57. Song CX, Clark TA, Lu XY et al (2012) Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods 9:75–77

    Article  CAS  Google Scholar 

  58. Salbert G, Weber M (2012) Tracking genomic hydroxymethylation by the base. Nat Methods 9:45–46

    Article  CAS  Google Scholar 

  59. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  PubMed  CAS  Google Scholar 

  60. Flusberg BA, Webster DR, Lee JH et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465

    Article  PubMed  CAS  Google Scholar 

  61. Kinney SM, Chin HG, Vaisvila R et al (2011) Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286:24685–24693

    Article  PubMed  CAS  Google Scholar 

  62. Booth MJ, Branco MR, Ficz G et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–937

    Article  PubMed  CAS  Google Scholar 

  63. Ball MP, Li JB, Gao Y et al (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27:361–368

    Article  PubMed  CAS  Google Scholar 

  64. Colaneri A, Staffa N, Fargo DC et al (2011) Expanded methyl-sensitive cut counting reveals hypomethylation as an epigenetic state that highlights functional sequences of the genome. Proc Natl Acad Sci U S A 108:9715–9720

    Article  PubMed  CAS  Google Scholar 

  65. Khulan B, Thompson RF, Ye K et al (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16:1046–1055

    Article  PubMed  CAS  Google Scholar 

  66. Khare T, Pai S, Koncevicius K et al (2012) 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol 19:1037–1043

    Article  PubMed  CAS  Google Scholar 

  67. Yu M, Hon GC, Szulwach KE et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380

    Article  PubMed  CAS  Google Scholar 

  68. Down TA, Rakyan VK, Turner DJ et al (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26:779–785

    Article  PubMed  CAS  Google Scholar 

  69. Pelizzola M, Koga Y, Urban AE et al (2008) MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res 18:1652–1659

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Meehan lab for advice on the development and application of 5hmC protocols. Work in RM’s lab is supported by the Medical Research Council, by the BBSRC, and by the Innovative Medicines Initiative Joint Undertaking (IMI JU) under grant agreement number 115001 (MARCAR project). URL: http://www.imi-marcar.eu/.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Nestor, C.E., Reddington, J.P., Benson, M., Meehan, R.R. (2014). Investigating 5-Hydroxymethylcytosine (5hmC): The State of the Art. In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics