Skip to main content

MicroRNA Maturation and Human Disease

  • Protocol
  • First Online:
miRNA Maturation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1095))

Abstract

Numerous studies describe alterations in the levels of specific microRNAs (miRNAs) that are associated with human pathologies. Some of these alterations may give rise to the development of novel diagnostic tools, while certain miRNAs additionally could serve as novel drug targets. Moreover, components of the miRNA maturation machinery may be up- or down-regulated in human disease. In such cases, the consequences for the expression of individual miRNAs are however only poorly understood. Herein, we review the current knowledge of how miRNAs are linked to human disease and which parts of the miRNA maturation machinery could serve as future drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida MI, Reis RM, Calin GA (2011) MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res. doi:10.1016/j.mrfmmm.2011.03.009

    PubMed  Google Scholar 

  2. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230. doi:10.1038/nrm2347

    Article  PubMed  CAS  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  PubMed  CAS  Google Scholar 

  4. Ruvkun G, Ambros V, Coulson A, Waterston R, Sulston J, Horvitz HR (1989) Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics 121(3):501–516

    PubMed  CAS  Google Scholar 

  5. Wightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G (1991) Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 5(10):1813–1824

    Article  PubMed  CAS  Google Scholar 

  6. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216(2):671–680. doi:10.1006/dbio.1999.9523

    Article  PubMed  CAS  Google Scholar 

  7. Kato M, Slack FJ (2012) Ageing and the small, non-coding RNA world. Ageing Res Rev. doi:10.1016/j.arr.2012.03.012

    PubMed  Google Scholar 

  8. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  PubMed  CAS  Google Scholar 

  9. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89. doi:10.1038/35040556

    Article  PubMed  CAS  Google Scholar 

  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  11. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38(3):323–332. doi:10.1016/j.molcel.2010.03.013

    Article  PubMed  CAS  Google Scholar 

  12. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419. doi:10.1038/nature01957

    Article  PubMed  CAS  Google Scholar 

  13. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531. doi:10.1038/nrg1379

    Article  PubMed  CAS  Google Scholar 

  14. Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19(5):517–529. doi:10.1101/gad.1284105

    Article  PubMed  CAS  Google Scholar 

  15. Hannon GJ (2002) RNA interference. Nature 418(6894):244–251. doi:10.1038/418244a

    Article  PubMed  CAS  Google Scholar 

  16. Arenz C (2006) MicroRNAs—future drug targets? Angew Chem Int Ed Engl 45(31):5048–5050

    Article  PubMed  CAS  Google Scholar 

  17. Deiters A (2010) Small molecule modifiers of the microRNA and RNA interference pathway. AAPS J 12(1):51–60. doi:10.1208/s12248-009-9159-3

    Article  PubMed  CAS  Google Scholar 

  18. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  PubMed  CAS  Google Scholar 

  19. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736. doi:10.1126/science.1096781

    Article  PubMed  CAS  Google Scholar 

  20. Cullen BR (2013) MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 14(3):205–210. doi:10.1038/ni.2537

    Article  PubMed  CAS  Google Scholar 

  21. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, Braich R, Manoharan M, Soutschek J, Ohler U, Cullen BR (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450(7172):1096–1099. doi:10.1038/nature05992

    Article  PubMed  CAS  Google Scholar 

  22. Zhao Y, Xu H, Yao Y, Smith LP, Kgosana L, Green J, Petherbridge L, Baigent SJ, Nair V (2011) Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. PLoS Pathog 7(2):e1001305. doi:10.1371/journal.ppat.1001305

    Article  PubMed  CAS  Google Scholar 

  23. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309(5740):1577–1581. doi:10.1126/science.1113329

    Article  PubMed  CAS  Google Scholar 

  24. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801. doi:10.1056/NEJMoa050995

    Article  PubMed  CAS  Google Scholar 

  25. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198. doi:10.1016/j.ccr.2006.01.025

    Article  PubMed  CAS  Google Scholar 

  26. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070. doi:10.1158/0008-5472.CAN-05-1783

    Article  PubMed  CAS  Google Scholar 

  27. Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148(6):1172–1187. doi:10.1016/j.cell.2012.02.005

    Article  PubMed  CAS  Google Scholar 

  28. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q (2008) An analysis of human microRNA and disease associations. PLoS One 3(10):e3420. doi:10.1371/journal.pone.0003420

    Article  PubMed  Google Scholar 

  29. Zandberga E, Kozirovskis V, Abols A, Andrejeva D, Purkalne G, Line A (2013) Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer. Genes Chromosomes Cancer 52(4):356–369. doi:10.1002/gcc.22032

    Article  PubMed  CAS  Google Scholar 

  30. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518. doi:10.1073/pnas.0804549105

    Article  PubMed  CAS  Google Scholar 

  31. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Zen K, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006. doi:10.1038/cr.2008.282

    Article  PubMed  CAS  Google Scholar 

  32. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. doi:10.1038/ncb1596

    Article  PubMed  CAS  Google Scholar 

  33. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signal 2(100):ra81. doi:10.1126/scisignal.2000610

    Article  Google Scholar 

  34. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. doi:10.1038/ncomms1285

    Article  PubMed  Google Scholar 

  35. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433. doi:10.1038/ncb2210

    Article  PubMed  CAS  Google Scholar 

  36. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008. doi:10.1073/pnas.1019055108

    Article  PubMed  CAS  Google Scholar 

  37. Seggerson K, Tang L, Moss EG (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol 243(2):215–225. doi:10.1006/dbio.2001.0563

    Article  PubMed  CAS  Google Scholar 

  38. Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66(15):7390–7394. doi:10.1158/0008-5472.CAN-06-0800

    Article  PubMed  CAS  Google Scholar 

  39. Liu CG, Calin GA, Volinia S, Croce CM (2008) MicroRNA expression profiling using microarrays. Nat Protocol 3(4):563–578. doi:10.1038/nprot.2008.14

    Article  CAS  Google Scholar 

  40. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033. doi:10.1158/0008-5472.CAN-05-0137

    Article  PubMed  CAS  Google Scholar 

  41. Jiang J, Lee EJ, Schmittgen TD (2006) Increased expression of microRNA-155 in Epstein-Barr virus transformed lymphoblastoid cell lines. Genes Chromosomes Cancer 45(1):103–106. doi:10.1002/gcc.20264

    Article  PubMed  CAS  Google Scholar 

  42. Wark AW, Lee HJ, Corn RM (2008) Multiplexed detection methods for profiling microRNA expression in biological samples. Angew Chem Int Ed Engl 47(4):644–652. doi:10.1002/anie.200702450

    Article  PubMed  CAS  Google Scholar 

  43. Meyer SU, Pfaffl MW, Ulbrich SE (2010) Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett 32(12):1777–1788. doi:10.1007/s10529-010-0380-z

    Article  PubMed  CAS  Google Scholar 

  44. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14(5):844–852. doi:10.1261/rna.939908

    Article  PubMed  CAS  Google Scholar 

  45. Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10(5):490–497. doi:10.1093/bib/bbp019

    Article  PubMed  CAS  Google Scholar 

  46. Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, Bosio A (2009) Absolute quantification of microRNAs by using a universal reference. RNA 15(12):2375–2384. doi:10.1261/rna.1754109

    Article  PubMed  CAS  Google Scholar 

  47. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi:10.1038/nrc1997

    Article  PubMed  CAS  Google Scholar 

  48. Cole MD, McMahon SB (1999) The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18(19):2916–2924. doi:10.1038/sj.onc.1202748

    Article  PubMed  CAS  Google Scholar 

  49. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843

    Article  PubMed  Google Scholar 

  50. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  PubMed  CAS  Google Scholar 

  51. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004. doi:10.1073/pnas.0307323101

    Article  PubMed  CAS  Google Scholar 

  52. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261. doi:10.1073/pnas.0510565103

    Article  PubMed  CAS  Google Scholar 

  53. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130(7):2113–2129. doi:10.1053/j.gastro.2006.02.057

    Article  PubMed  CAS  Google Scholar 

  54. Carpenter B, MacKay C, Alnabulsi A, MacKay M, Telfer C, Melvin WT, Murray GI (2006) The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta 1765(2):85–100. doi:10.1016/j.bbcan.2005.10.002

    PubMed  CAS  Google Scholar 

  55. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T, Takahashi T (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96(2):111–115. doi:10.1111/j.1349-7006.2005.00015.x

    Article  PubMed  CAS  Google Scholar 

  56. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756. doi:10.1158/0008-5472.CAN-04-0637

    Article  PubMed  CAS  Google Scholar 

  57. Sand M, Skrygan M, Georgas D, Arenz C, Gambichler T, Sand D, Altmeyer P, Bechara FG (2011) Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components Argonaute-1, Argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer. Mol Carcinog. doi:10.1002/mc.20861

    Google Scholar 

  58. Pellegrino L, Jacob J, Roca-Alonso L, Krell J, Castellano L, Frampton AE (2013) Altered expression of the miRNA processing endoribonuclease Dicer has prognostic significance in human cancers. Expert Rev Anticancer Ther 13(1):21–27. doi:10.1586/era.12.150

    Article  PubMed  CAS  Google Scholar 

  59. Jafarnejad SM, Ardekani GS, Ghaffari M, Martinka M, Li G (2012) Sox4-mediated Dicer expression is critical for suppression of melanoma cell invasion. Oncogene. doi:10.1038/onc.2012.239

    PubMed  Google Scholar 

  60. Shan G, Li Y, Zhang J, Li W, Szulwach KE, Duan R, Faghihi MA, Khalil AM, Lu L, Paroo Z, Chan AW, Shi Z, Liu Q, Wahlestedt C, He C, Jin P (2008) A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol 26(8):933–940. doi:10.1038/nbt.1481

    Article  PubMed  CAS  Google Scholar 

  61. Newman MA, Hammond SM (2010) Emerging paradigms of regulated microRNA processing. Genes Dev 24(11):1086–1092. doi:10.1101/gad.1919710

    Article  PubMed  CAS  Google Scholar 

  62. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  Google Scholar 

  63. Lindow M, Kauppinen S (2012) Discovering the first microRNA-targeted drug. J Cell Biol 199(3):407–412. doi:10.1083/jcb.201208082

    Article  PubMed  CAS  Google Scholar 

  64. Hu J, Xu Y, Hao J, Wang S, Li C, Meng S (2012) MiR-122 in hepatic function and liver diseases. Protein Cell 3(5):364–371. doi:10.1007/s13238-012-2036-3

    Article  PubMed  CAS  Google Scholar 

  65. Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D (2011) Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. doi:10.1002/mc.21864

    PubMed  Google Scholar 

  66. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93(1):98–104. doi:10.1038/clpt.2012.192

    Article  PubMed  CAS  Google Scholar 

  67. Bonetta L (2009) RNA-based therapeutics: ready for delivery? Cell 136(4):581–584. doi:10.1016/j.cell.2009.02.010

    Article  PubMed  CAS  Google Scholar 

  68. Highleyman L (1998) Fomivirsen. BETA 29: 31

    Google Scholar 

  69. Razonable RR (2011) Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin Proc 86(10):1009–1026. doi:10.4065/mcp.2011.0309

    Article  PubMed  CAS  Google Scholar 

  70. Davies BP, Arenz C (2006) A homogenous assay for micro RNA maturation. Angew Chem Int Ed Engl 45(33):5550–5552

    Article  PubMed  CAS  Google Scholar 

  71. Davies BP, Arenz C (2008) A fluorescence probe for assaying micro RNA maturation. Bioorg Med Chem 16(1):49–55

    Article  PubMed  CAS  Google Scholar 

  72. Neubacher S, Dojahn CM, Arenz C (2011) A rapid assay for miRNA maturation by using unmodified pre-miRNA. ChemBioChem 12(15):2302–2305. doi:10.1002/cbic.201100445

    Article  PubMed  CAS  Google Scholar 

  73. Bose D, Jayaraj G, Suryawanshi H, Agarwala P, Pore SK, Banerjee R, Maiti S (2012) The tuberculosis drug streptomycin as a potential cancer therapeutic: inhibition of miR-21 function by directly targeting its precursor. Angew Chem Int Ed Engl 51(4):1019–1023. doi:10.1002/anie.201106455

    Article  PubMed  CAS  Google Scholar 

  74. Connelly CM, Thomas M, Deiters A (2012) High-throughput luciferase reporter assay for small-molecule inhibitors of microRNA function. J Biomol Screen. doi:10.1177/1087057112439606

    PubMed  Google Scholar 

  75. Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A (2008) Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl 47(39):7482–7484. doi:10.1002/anie.200801555

    Article  PubMed  CAS  Google Scholar 

  76. Young DD, Connelly CM, Grohmann C, Deiters A (2010) Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132(23):7976–7981. doi:10.1021/ja910275u

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Hesse, M., Arenz, C. (2014). MicroRNA Maturation and Human Disease. In: Arenz, C. (eds) miRNA Maturation. Methods in Molecular Biology, vol 1095. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-703-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-703-7_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-702-0

  • Online ISBN: 978-1-62703-703-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics