Skip to main content

Molecular Methods for Validation of the Biological Activity of Peptide Nucleic Acids Targeting MicroRNAs

  • Protocol
  • First Online:
miRNA Maturation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1095))

Abstract

The involvement of microRNAs in human pathologies is a firmly established fact. Accordingly, the pharmacological modulation of their activity appears to be a very appealing issue in the development of new types of drugs (miRNA therapeutics). One of the most interesting issues is the possible development of miRNA therapeutics for development of anti-cancer molecules. In this respect appealing molecules are based on peptide nucleic acids (PNAs), displaying a pseudo-peptide backbone composed of N-(2-aminoethyl)glycine units and found to be excellent candidates for antisense and antigene therapies. The major limit in the use of PNAs for alteration of gene expression is the low uptake by eukaryotic cells. The aim of this chapter is to describe methods for determining the activity of PNAs designed to target oncomiRNAs, using as model system miR-221 and its target p27Kip1 mRNA. The effects of PNAs targeting miR-221 are here presented discussing data obtained using as model system the human breast cancer cell line MDA-MB-231, in which miR-221 is up-regulated and p27Kip1 down-regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEEA:

2-(2-aminoethoxy)ethoxyacetyl spacer

FACS:

Fluorescence-activated cell sorter

FBS:

Fetal bovine serum

Fl:

Fluorescein

PBS:

Phosphate-buffered saline

PNA:

Peptide nucleic acid

3′UTR:

3′-untranslated region

RT-qPCR:

Retro transcription-quantitative polymerase chain reaction

EDTA:

Ethylenediaminetetraacetic acid

SDS:

Sodium dodecyl sulfate

DTT:

Dithiotreithol

TBS:

Tris-buffered saline

HRP:

Horseradish peroxidase

RISC:

RNA-induced silencing complex

References

  1. He L, Hannon GJ (2010) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  Google Scholar 

  2. Manicardi A, Fabbri E, Tedeschi T, Sforza S, Bianchi N et al (2012) Cellular Uptakes, Biostabilities and Anti-miR-210 Activities of Chiral Arginine-PNAs in Leukaemic K562 Cells. Chembiochem 13:1327–1337

    Article  PubMed  CAS  Google Scholar 

  3. Fabbri E, Manicardi A, Tedeschi T, Sforza S, Bianchi N et al (2011) Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem 6:2192–2202

    Article  PubMed  CAS  Google Scholar 

  4. Fabbri E, Brognara E, Borgatti M, Lampronti I, Finotti A et al (2011) miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics 3:733–745

    Article  PubMed  CAS  Google Scholar 

  5. Gambari R, Fabbri E, Borgatti M, Lampronti I, Finotti A et al (2011) Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 82:1416–1429

    Article  PubMed  CAS  Google Scholar 

  6. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  PubMed  CAS  Google Scholar 

  7. Nastruzzi C, Cortesi R, Esposito E, Gambari R, Borgatti M et al (2000) Liposomes as carriers for DNA-PNA hybrids. J Control Release 68:237–249

    Article  PubMed  CAS  Google Scholar 

  8. Karkare S, Bhatnagar D (2006) Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol 71:575–586

    Article  PubMed  CAS  Google Scholar 

  9. Tonelli R, Fronza S, Purgato S, Camerin C, Bologna F et al (2005) Anti-gene Peptide Nucleic Acid (PNA) Specifically Inhibits N-myc Expression in Human Neuroblastoma Cells Leading to Persistent Cell-growth Inhibition and Apoptosis. Mol Cancer Ther 4:779–786

    Article  PubMed  CAS  Google Scholar 

  10. Nielsen PE (2001) Targeting double stranded DNA with peptide nucleic acid (PNA). Curr Med Chem 8:545–550

    Article  PubMed  CAS  Google Scholar 

  11. Borgatti M, Lampronti I, Romanelli A, Pedone C, Saviano M et al (2003) Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem 278:7500–7509

    Article  PubMed  CAS  Google Scholar 

  12. Rasmussen FW, Bendifallah N, Zachar V, Shiraishi T, Fink T et al (2006) Evaluation of transfection protocols for unmodified and modified peptide nucleic acid (PNA) oligomers. Oligonucleotides 16:43–57

    Article  PubMed  CAS  Google Scholar 

  13. Cortesi R, Mischiati C, Borgatti M, Breda L, Romanelli A et al (2004) Formulations for natural and peptide nucleic acids based on cationic polymeric submicron particles. AAPS Pharmsci 6:10–21

    Article  Google Scholar 

  14. Borgatti M, Breda L, Cortesi R, Nastruzzi C, Romanelli A et al (2002) Cationic liposomes as delivery systems for double-stranded PNA-DNA chimeras exhibiting decoy activity against NF-kappaB transcription factors. Biochem Pharmacol 64:609–616

    Article  PubMed  CAS  Google Scholar 

  15. Abes R, Arzumanov A, Moulton H, Abes S, Ivanova G (2008) Arginine-rich cell penetrating peptides: design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides. J Pept Sci 14:455–460

    Article  PubMed  CAS  Google Scholar 

  16. Torres AG, Threlfall RN, Gait MJ (2011) Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2′-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents. Artificial DNA PNA XNA 3:71–78

    Article  Google Scholar 

  17. Zhang C, Kang C, You Y, Pu P, Yang W (2009) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 34:1653–1660

    Article  PubMed  CAS  Google Scholar 

  18. Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    Article  PubMed  Google Scholar 

  19. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, Farace MG (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:2316–2324

    Article  Google Scholar 

  20. Mizuma M, Katayose Y, Yamamoto K, Shiraso S, Sasaki T (2008) Up-regulated p27Kip1 reduces matrix metalloproteinase-9 and inhibits invasion of human breast cancer cells. Anticancer Res 28:2669–2677

    PubMed  CAS  Google Scholar 

  21. Bianchi N, Zuccato C, Lampronti I, Borgatti M, Gambari R (2009) Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression. BMB Rep 42:493–499

    Article  PubMed  CAS  Google Scholar 

  22. Brognara E, Fabbri E, Aimi F, Manicardi A, Bianchi N et al (2012) Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int J Oncol 41:2119–2127. doi:10.3892

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from MIUR (PRIN09 grant n. 20093N774P “Molecular recognition of microRNA (miR) by modified PNA: from structure to activity”). R.G. is granted by Fondazione Cariparo (Cassa di Risparmio di Padova e Rovigo), by UE ITHANET Project (Infrastructure for the Thalassaemia Research Network), by Telethon (contract GGP10214). This research is also supported by CIB (Interuniversity Consortium for Biotechnologies) and by Associazione Veneta per la Lotta alla Talassemia (AVLT), Rovigo.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Brognara, E., Fabbri, E., Bianchi, N., Finotti, A., Corradini, R., Gambari, R. (2014). Molecular Methods for Validation of the Biological Activity of Peptide Nucleic Acids Targeting MicroRNAs. In: Arenz, C. (eds) miRNA Maturation. Methods in Molecular Biology, vol 1095. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-703-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-703-7_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-702-0

  • Online ISBN: 978-1-62703-703-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics