Skip to main content

Analysis of Small RNA-Guided Endonuclease Activity in Endogenous Piwi Protein Complexes from Mouse Testes

  • Protocol
  • First Online:
PIWI-Interacting RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1093))

  • 2420 Accesses

Abstract

Small RNAs associate with members of the Argonaute family to function in gene regulation, transposon control, and creation of silent chromatin domains. In this partnership, small RNAs act as guides for the bound Argonaute and other associated proteins. Complementary base pairing of small RNAs to target nucleic acid molecules allow specificity for the small RNA-mediated functions. One key activity of some Argonaute protein family members is their small RNA-guided endonuclease activity called Slicer action. Here we describe a protocol that can be used to probe slicer activity in endogenous Piwi complexes isolated from mouse testes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258

    Article  CAS  PubMed  Google Scholar 

  3. Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136(4):656–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574

    Article  CAS  PubMed  Google Scholar 

  5. Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16(21):2733–2742

    Article  CAS  PubMed  Google Scholar 

  6. Sashital DG, Doudna JA (2010) Structural insights into RNA interference. Curr Opin Struct Biol 20(1):90–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pak J, Fire A (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315(5809):241–244

    Article  CAS  PubMed  Google Scholar 

  8. Horwich MD et al (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17(14):1265–1272

    Article  CAS  PubMed  Google Scholar 

  9. Kirino Y, Mourelatos Z (2007) The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. RNA 13(9):1397–1401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Saito K et al (2007) Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev 21(13):1603–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yu B et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307(5711):932–935

    Article  CAS  PubMed  Google Scholar 

  12. Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429(6989):318–322

    Article  CAS  PubMed  Google Scholar 

  13. Ma JB et al (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434(7033):666–670

    Article  CAS  PubMed  Google Scholar 

  14. Tian Y, Simanshu DK, Ma JB, Patel DJ (2011) Structural basis for piRNA 2′-O-methylated 3′-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc Natl Acad Sci U S A 108(3):903–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Simon B et al (2011) Recognition of 2′-O-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein. Structure 19(2):172–180

    Article  CAS  PubMed  Google Scholar 

  16. Frank F, Sonenberg N, Nagar B (2010) Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465(7299):818–822

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y et al (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456(7224):921–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang Y et al (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461(7265):754–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  20. Buhler M, Haas W, Gygi SP, Moazed D (2007) RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129(4):707–721

    Article  CAS  PubMed  Google Scholar 

  21. Buhler M, Moazed D (2007) Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14(11):1041–1048

    Article  PubMed  Google Scholar 

  22. Buhler M, Spies N, Bartel DP, Moazed D (2008) TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat Struct Mol Biol 15(10):1015–1023

    Article  PubMed Central  PubMed  Google Scholar 

  23. Buhler M, Verdel A, Moazed D (2006) Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125(5):873–886

    Article  CAS  PubMed  Google Scholar 

  24. Liu J et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  CAS  PubMed  Google Scholar 

  25. Rivas FV et al (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12(4):340–349

    Article  CAS  PubMed  Google Scholar 

  26. Song JJ et al (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10(12):1026–1032

    Article  CAS  PubMed  Google Scholar 

  27. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305(5689):1434–1437

    Article  CAS  PubMed  Google Scholar 

  28. Meister G et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    Article  CAS  PubMed  Google Scholar 

  29. Yuan YR et al (2005) Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell 19(3):405–419

    Article  CAS  PubMed  Google Scholar 

  30. Martinez J, Tuschl T (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18(9):975–980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Orban TI, Izaurralde E (2005) Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11(4):459–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Saito K et al (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20(16):2214–2222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gunawardane LS et al (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315(5818):1587–1590

    Article  CAS  PubMed  Google Scholar 

  34. Brennecke J et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–1103

    Article  CAS  PubMed  Google Scholar 

  35. Reuter M et al (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480:264–267. doi:10.1038/nature10672

    Article  CAS  PubMed  Google Scholar 

  36. De Fazio S et al (2011) The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480:259–263

    Article  PubMed  Google Scholar 

  37. Cifuentes D et al (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328(5986):1694–1698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465(7298):584–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19(23):2837–2848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Irvine DV et al (2006) Argonaute slicing is required for heterochromatic silencing and spreading. Science 313(5790):1134–1137

    Article  CAS  PubMed  Google Scholar 

  41. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18(10):758–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Darricarrere N, Liu N, Watanabe T, Lin H (2013) Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity. Proc Natl Acad Sci U S A 110(4):1297–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Bagijn MP et al (2012) Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337(6094):574–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge help and advice from Pietro Spinelli, Zhaolin Yang, Elisa Cora, Bruno Rodino, and Sara Silva in developing the assay protocol. We thank Kuan-Ming Chen, Radha Raman Pandey, and David Homolka for their critical comments on the manuscript. Help from Magdalena Wojtas for preparation of the figures is acknowledged. Work in the Pillai lab is supported by a European Research Council Starting Grant (pisilence) from the European Union to R.S.P.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reuter, M., Pillai, R.S. (2014). Analysis of Small RNA-Guided Endonuclease Activity in Endogenous Piwi Protein Complexes from Mouse Testes. In: Siomi, M. (eds) PIWI-Interacting RNAs. Methods in Molecular Biology, vol 1093. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-694-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-694-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-693-1

  • Online ISBN: 978-1-62703-694-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics