Skip to main content

Navigating the Global Protein–Protein Interaction Landscape Using iRefWeb

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1091))

Abstract

iRefWeb is a bioinformatics resource that offers access to a large collection of data on protein–protein interactions in over a thousand organisms. This collection is consolidated from 14 major public databases that curate the scientific literature. The collection is enhanced with a range of versatile data filters and search options that categorize various types of protein–protein interactions and protein complexes. Users of iRefWeb are able to retrieve all curated interactions for a given organism or those involving a given protein (or a list of proteins), narrow down their search results based on different supporting evidence, and assess the reliability of these interactions using various criteria. They may also examine all data and annotations related to any publication that described the interaction-detection experiments. iRefWeb is freely available to the research community worldwide at http://wodaklab.org/iRefWeb.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294

    Article  CAS  PubMed  Google Scholar 

  2. Kocher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Methods 4:807–815

    Article  PubMed  Google Scholar 

  3. Chiu W, Baker ML, Almo SC (2006) Structural biology of cellular machines. Trends Cell Biol 16:144–150

    Article  CAS  PubMed  Google Scholar 

  4. Shoemaker BA, Panchenko AR (2007) Deciphering protein–protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 3:e42

    Article  PubMed  PubMed Central  Google Scholar 

  5. Phizicky EM, Fields S (1995) Protein–protein interactions: methods for detection and analysis. Microbiol Rev 59:94–123

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Krogan NJ, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  CAS  PubMed  Google Scholar 

  7. Gavin AC, Bosche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  PubMed  Google Scholar 

  8. Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  9. Guruharsha KG, Rual JF, Zhai B et al (2011) A protein complex network of Drosophila melanogaster. Cell 147:690–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Havugimana PC, Hart GT, Nepusz T et al (2012) A census of human soluble protein complexes. Cell 150:1068–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butland G, Peregrin-Alvarez JM, Li J et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    Article  CAS  PubMed  Google Scholar 

  12. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34:D504–D506

    Article  CAS  PubMed  Google Scholar 

  13. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823

    Article  CAS  PubMed  Google Scholar 

  14. Salwinski L, Miller CS, Smith AJ et al (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846

    Article  CAS  PubMed  Google Scholar 

  16. Ceol A, Chatr Aryamontri A, Licata L et al (2010) MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 38:D532–D539

    Article  CAS  PubMed  Google Scholar 

  17. Ruepp A, Waegele B, Lechner M et al (2010) CORUM: the comprehensive resource of mammalian protein complexes–2009. Nucleic Acids Res 38:D497–D501

    Article  CAS  PubMed  Google Scholar 

  18. Orchard S, Kerrien S, Jones P et al (2007) Submit your interaction data the IMEx way: a step by step guide to trouble-free deposition. Proteomics 7(Suppl 1):28–34

    Article  PubMed  Google Scholar 

  19. Tarcea VG, Weymouth T, Ade A et al (2009) Michigan molecular interactions r2: from interacting proteins to pathways. Nucleic Acids Res 37:D642–D646

    Article  CAS  PubMed  Google Scholar 

  20. Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9:405

    Article  PubMed  PubMed Central  Google Scholar 

  21. Turinsky AL, Razick S, Turner B et al (2010) Literature curation of protein interactions: measuring agreement across major public databases. Database 2010:baq026

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chaurasia G, Malhotra S, Russ J et al (2009) UniHI 4: new tools for query, analysis and visualization of the human protein-protein interactome. Nucleic Acids Res 37:D657–D660

    Article  CAS  PubMed  Google Scholar 

  23. Orchard S, Binz PA, Borchers C et al (2012) Ten years of standardizing proteomic data: a report on the HUPO-PSI Spring Workshop: April 12-14th, 2012, San Diego, USA. Proteomics 12:2767–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orchard S, Hermjakob H, Apweiler R (2003) The proteomics standards initiative. Proteomics 3:1374–1376

    Article  CAS  PubMed  Google Scholar 

  25. Kamburov A, Wierling C, Lehrach H et al (2009) ConsensusPathDB – a database for integrating human functional interaction networks. Nucleic Acids Res 37:D623–D628

    Article  CAS  PubMed  Google Scholar 

  26. Cusick ME, Yu H, Smolyar A et al (2009) Literature-curated protein interaction datasets. Nat Methods 6:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salwinski L, Licata L, Winter A et al (2009) Recurated protein interaction datasets. Nat Methods 6:860–861

    Article  CAS  PubMed  Google Scholar 

  28. Turner B, Razick S, Turinsky AL et al (2010) iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence. Database 2010:baq023

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gingras AC, Gstaiger M, Raught B et al (2007) Analysis of protein complexes using mass spectrometry. Nature reviews. Mol Cell Biol 8:645–654

    CAS  Google Scholar 

  30. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  31. Stagljar I, Korostensky C, Johnsson N et al (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 95:5187–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morell M, Ventura S, Aviles FX (2009) Protein complementation assays: approaches for the in vivo analysis of protein interactions. FEBS Lett 583:1684–1691

    Article  CAS  PubMed  Google Scholar 

  33. Wodak SJ, Vlasblom J, Pu S (2011) High-throughput analyses and curation of protein interactions in yeast. Methods Mol Biol 759: 381–406

    Article  CAS  PubMed  Google Scholar 

  34. Bader JS, Chaudhuri A, Rothberg JM et al (2004) Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22:78–85

    Article  CAS  PubMed  Google Scholar 

  35. Braun P, Tasan M, Dreze M et al (2009) An experimentally derived confidence score for binary protein–protein interactions. Nat Methods 6:91–97

    Article  CAS  PubMed  Google Scholar 

  36. Kuhner S, van Noort V, Betts MJ et al (2009) Proteome organization in a genome-reduced bacterium. Science 326:1235–1240

    Article  PubMed  Google Scholar 

  37. Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of Drosophila melanogaster. Science 302: 1727–1736

    Article  CAS  PubMed  Google Scholar 

  38. Kerrien S, Orchard S, Montecchi-Palazzi L et al (2007) Broadening the horizon–level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol 5:44

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21:2076–2082

    Article  CAS  PubMed  Google Scholar 

  40. Collins SR, Miller KM, Maas NL et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446:806–810

    Article  CAS  PubMed  Google Scholar 

  41. Lehner B, Crombie C, Tischler J et al (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38:896–903

    Google Scholar 

  42. Tong AH, Lesage G, Bader GD et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  CAS  PubMed  Google Scholar 

  43. Boutet E, Lieberherr D, Tognolli M et al (2007) UniProtKB/Swiss-Prot. Methods Mol Biol 406:89–112

    CAS  PubMed  Google Scholar 

  44. Sayers EW, Barrett T, Benson DA et al (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40:D13–D25

    Article  CAS  PubMed  Google Scholar 

  45. Ceol A, Chatr-Aryamontri A, Licata L et al (2008) Linking entries in protein interaction database to structured text: the FEBS Letters experiment. FEBS Lett 582:1171–1177

    Article  CAS  PubMed  Google Scholar 

  46. Lopes CT, Franz M, Kazi F et al (2010) Cytoscape Web: an interactive web-based network browser. Bioinformatics 26:2347–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turinsky AL, Turner B, Borja RC et al (2011) DAnCER: disease-annotated chromatin epigenetics resource. Nucleic Acids Res 39:D889–D894

    Article  CAS  PubMed  Google Scholar 

  48. Lowe HJ, Barnett GO (1994) Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches. JAMA 271:1103–1108

    Article  CAS  PubMed  Google Scholar 

  49. Gillies SG, Haddley K, Vasiliou SA et al (2011) Distinct gene expression profiles directed by the isoforms of the transcription factor neuron-restrictive silencer factor in human SK-N-AS neuroblastoma cells. J Mol Neurosci 44: 77–90

    Article  CAS  PubMed  Google Scholar 

  50. Palm K, Metsis M, Timmusk T (1999) Neuron-specific splicing of zinc finger transcription factor REST/NRSF/XBR is frequent in neuroblastomas and conserved in human, mouse and rat. Brain research. Mol Brain Res 72:30–39

    Article  CAS  PubMed  Google Scholar 

  51. Canzonetta C, Mulligan C, Deutsch S et al (2008) DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome. Am J Hum Genet 83:388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Naruse Y, Aoki T, Kojima T et al (1999) Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc Natl Acad Sci USA 96:13691–13696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang J, Rao S, Chu J et al (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444:364–368

    Article  CAS  PubMed  Google Scholar 

  55. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed  Google Scholar 

  56. Gu H, Liang Y, Mandel G et al (2005) Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci USA 102:7571–7576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (MOP#82940), the Ontario Research Fund, and the SickKids Foundation. SJW was Canada Research Chair, Tier 1.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Turinsky, A.L., Razick, S., Turner, B., Donaldson, I.M., Wodak, S.J. (2014). Navigating the Global Protein–Protein Interaction Landscape Using iRefWeb. In: Chen, Y. (eds) Structural Genomics. Methods in Molecular Biology, vol 1091. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-691-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-691-7_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-690-0

  • Online ISBN: 978-1-62703-691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics