Skip to main content

A Cost-Effective Protocol for the Parallel Production of Libraries of 13CH3-Specifically Labeled Mutants for NMR Studies of High Molecular Weight Proteins

  • Protocol
  • First Online:
Book cover Structural Genomics

Abstract

There is increasing interest in applying NMR spectroscopy to the study of large protein assemblies. Development of methyl-specific labeling protocols combined with improved NMR spectroscopy enable nowadays studies of proteins complexes up to 1 MDa. For such large complexes, the major interest lies in obtaining structural, dynamic and interaction information in solution, which requires sequence-specific resonance assignment of NMR signals. While such analysis is quite standard for small proteins, it remains one of the major bottlenecks when the size of the protein increases.

Here, we describe implementation and latest improvements of SeSAM, a fast and user-friendly approach for assignment of methyl resonances in large proteins using mutagenesis. We have improved culture medium to boost the production of methyl-specifically labeled proteins, allowing us to perform small-scale parallel production and purification of a library of 13CH3-specifically labeled mutants. This optimized protocol is illustrated by assignment of Alanine, Isoleucine, and Valine methyl groups of the homododecameric aminopeptidase PhTET2. We estimated that this improved method allows assignment of ca. 100 methyl cross-peaks in 2 weeks, including 4 days of NMR time and less than 2 k€ of isotopic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

    Article  CAS  PubMed  Google Scholar 

  2. Gardner K, Kay LE (1997) Production and incorporation of 15N, 13C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599–7600

    Article  CAS  Google Scholar 

  3. Ayala I, Sounier R, Use N et al (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119

    Article  CAS  PubMed  Google Scholar 

  4. Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754

    Article  CAS  PubMed  Google Scholar 

  5. Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46:75–87

    Article  CAS  PubMed  Google Scholar 

  6. Plevin MJ, Boisbouvier J (2012) Isotope-labelling of methyl groups for NMR studies of large proteins. In: Recent developments in biomolecular NMR. Royal Society of Chemistry. doi:10.1039/9781849735391

    Google Scholar 

  7. Stoffregen MC, Schwer MM, Renschler FA et al (2012) Methionine scanning as an NMR tool for detecting and analyzing biomolecular interaction surfaces. Structure 20:573–581

    Article  CAS  PubMed  Google Scholar 

  8. Religa TL, Ruschak AM, Rosenzweig R et al (2011) Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the ClpP protease. J Am Chem Soc 133:9063–9068

    Article  CAS  PubMed  Google Scholar 

  9. Bax A (2011) Triple resonance three-dimensional protein NMR: before it became a black box. J Magn Reson 213:442–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gelis I, Bonvin AM, Keramisanou D et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turano P, Lalli D, Felli IC et al (2010) NMR reveals pathway for ferric mineral precursors to the central cavity of ferritin. Proc Natl Acad Sci USA 107:545–550

    Article  CAS  PubMed  Google Scholar 

  12. Marassi FM, Ramamoorthy A, Opella SJ (1997) Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc Natl Acad Sci USA 94:8551–8556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu Y, Liu M, Simpson PJ et al (2009) Automated assignment in selectively methyl-labelled proteins. J Am Chem Soc 131:9480–9481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Venditti V, Fawzi NL, Clore GM (2011) Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear overhauser enhancement spectroscopy. J Biomol NMR 51:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seven A, Rizo J (2012) Assigning the methyl resonances of the 73 kDa Munc13-1 MUN domain by mutagenesis. 25 th ICMRBS-poster n° P302 TU, Lyon

    Google Scholar 

  16. Yang X, Welch JL, Arnold JJ et al (2010) Long-range interaction networks in the function and fidelity of poliovirus RNA-dependent RNA polymerase studied by nuclear magnetic resonance. Biochemistry 49:9361–9371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosenzweig R, Moradi S, Zarrine-Afsar A et al (2013) Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science 339:1080–1083

    Article  CAS  PubMed  Google Scholar 

  18. Amero C, Asuncion Dura M, Noirclerc-Savoye M et al (2011) A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J Biomol NMR 50:229–236

    Article  CAS  PubMed  Google Scholar 

  19. Goto NK, Gardner KH, Mueller GA et al (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374

    Article  CAS  PubMed  Google Scholar 

  20. Fischer M, Kloiber K, Hausler J et al (2007) Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chembiochem 8:610–612

    Article  CAS  PubMed  Google Scholar 

  21. Gans P, Hamelin O, Sounier R et al (2010) Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem Int Ed Engl 49:1958–1962

    Article  CAS  PubMed  Google Scholar 

  22. Ayala I, Hamelin O, Amero C et al (2012) An optimized isotopic labelling strategy of isoleucine-gamma2 methyl groups for solution NMR studies of high molecular weight proteins. Chem Commun (Camb) 48:1434–1436

    Article  CAS  Google Scholar 

  23. Isaacson RL, Simpson PJ, Liu M et al (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129:15428–15429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sinha K, Jen-Jacobson L, Rule GS (2011) Specific labeling of threonine methyl groups for NMR studies of protein-nucleic acid complexes. Biochemistry 50:10189–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mas G, Crublet E, Hamelin O et al (2013) Specific labeling and assignment Strategies of valine methyl groups for the NMR Studies of high molecular weight proteins (submitted)

    Google Scholar 

  26. Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878

    Article  CAS  PubMed  Google Scholar 

  27. Amero C, Schanda P, Dura MA et al (2009) Fast two-dimensional NMR spectroscopy of high molecular weight protein assemblies. J Am Chem Soc 131:3448–3449

    Article  CAS  PubMed  Google Scholar 

  28. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  29. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan PH, Weissbach S, Okon M et al (2012) Nuclear magnetic resonance spectral assignments of α-1,4-galactosyltransferase LgtC from Neisseria meningitidis: substrate binding and multiple conformational states. Biochemistry 51:8278–8292

    Article  CAS  PubMed  Google Scholar 

  31. Plevin MJ, Hamelin O, Boisbouvier J et al (2011) A simple biosynthetic method for stereospecific resonance assignment of prochiral methyl groups in proteins. J Biomol NMR 49:61–67

    Article  CAS  PubMed  Google Scholar 

  32. Sprangers R, Gribun A, Hwang PM et al (2005) Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc Natl Acad Sci USA 102:16678–16683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr P. Macek, M. Plevin, O. Hamelin, P. Gans, I. Ayala, C. Amero, and A. Favier for stimulating discussions and assistance in sample preparation or analysis. This work used the RobioMol, High-Field NMR, Isotopic Labeling, and Seq3A platforms of the Grenoble Instruct centre (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from FRISBI (ANR-10-INSB-05-02), and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme FP7/2007-2013 Grant Agreement no. 260887.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Crublet, E. et al. (2014). A Cost-Effective Protocol for the Parallel Production of Libraries of 13CH3-Specifically Labeled Mutants for NMR Studies of High Molecular Weight Proteins. In: Chen, Y. (eds) Structural Genomics. Methods in Molecular Biology, vol 1091. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-691-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-691-7_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-690-0

  • Online ISBN: 978-1-62703-691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics