Skip to main content

Optimization of Steady-State 13C-Labeling Experiments for Metabolic Flux Analysis

  • Protocol
  • First Online:
Plant Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1090))

Abstract

While steady-state 13C metabolic flux analysis is a powerful method for deducing multiple fluxes in the central metabolic network of heterotrophic and mixotrophic plant tissues, it is also time-consuming and technically challenging. Key steps in the design and interpretation of steady-state 13C labeling experiments are illustrated with a generic protocol based on applications to plant cell suspension cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kruger NJ, Masakapalli SK, Ratcliffe RG (2012) Strategies for investigating the plant metabolic network with steady-state metabolic flux analysis: lessons from an Arabidopsis cell culture and other systems. J Exp Bot 63:2309–2323

    Article  PubMed  CAS  Google Scholar 

  2. O’Grady J, Schwender J, Shachar-Hill Y, Morgan JA (2012) Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies. J Exp Bot 63:2293–2308

    Article  PubMed  Google Scholar 

  3. Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511

    Article  PubMed  CAS  Google Scholar 

  4. Allen DK, Ratcliffe RG (2009) Quantification of isotope label. In: Schwender J (ed) Plant metabolic networks. Springer, New York, pp 105–149

    Chapter  Google Scholar 

  5. Huege J, Poskar CH, Franke M, Junker BH (2012) Towards high throughput metabolic flux analysis in plants. Mol Biosyst 8:2466–2469

    Article  PubMed  CAS  Google Scholar 

  6. Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    Article  PubMed  CAS  Google Scholar 

  7. Möllney M, Wiechert W, Kownatzki D, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks. IV. Optimal design of isotopomer labeling experiments. Biotechnol Bioeng 66:86–103

    Article  PubMed  Google Scholar 

  8. Libourel IGL, Gehan JP, Shachar-Hill Y (2007) Design of substrate label for steady state flux measurements in plant systems using the metabolic network of Brassica napus embryos. Phytochemistry 68:2211–2221

    Article  PubMed  CAS  Google Scholar 

  9. Schwender J, Shachar-Hill Y, Ohlrogge JB (2006) Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem 281:34040–34047

    Article  PubMed  CAS  Google Scholar 

  10. Masakapalli SK, Le Lay P, Huddleston JE et al (2010) Subcellular flux analysis of central metabolism in a heterotrophic Arabidopsis thaliana cell suspension using steady-state stable isotope labeling. Plant Physiol 152:602–619

    Article  PubMed  CAS  Google Scholar 

  11. Troufflard S, Roscher A, Thomasset B et al (2007) In vivo 13C NMR determines metabolic fluxes and steady state in linseed embryos. Phytochemistry 68:2341–2350

    Article  PubMed  CAS  Google Scholar 

  12. Kruger NJ, Troncoso-Ponce MA, Ratcliffe RG (2008) 1H NMR of metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat Protoc 3:1001–1012

    Article  PubMed  CAS  Google Scholar 

  13. Kruger NJ, Huddleston JE, Le Lay P et al (2007) Network flux analysis: impact of 13C-substrates on metabolism in Arabidopsis thaliana cell suspension cultures. Phytochemistry 68:2176–2188

    Article  PubMed  CAS  Google Scholar 

  14. Lonien J, Schwender J (2009) Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis. Plant Physiol 151:1617–1634

    Article  PubMed  CAS  Google Scholar 

  15. Williams TCR, Poolman MG, Howden AJ et al (2010) A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Plant Physiol 154:311–323

    Article  PubMed  CAS  Google Scholar 

  16. Weitzel M, Nöh K, Dalman T et al (2013) 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29:143–145

    Google Scholar 

  17. Wiechert W, de Graaf AA (1997) Bidirectional reaction steps in metabolic networks. I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55:101–117

    Article  PubMed  CAS  Google Scholar 

  18. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337

    Article  PubMed  CAS  Google Scholar 

  19. Chernick MR (2007) Bootstrap methods: a guide for practitioners and researchers, 2nd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  20. Dalman T, Dörnemann T, Juhnke E et al (2013) Cloud MapReduce for Monte Carlo bootstrap applied to metabolic flux analysis. Future Gen Comp Syst 29:582–590

    Google Scholar 

Download references

Acknowledgments

S.K.M. acknowledges financial support from the University of Oxford (Clarendon Scholarship), Exeter College (Mr Krishna Pathak Scholarship) and a UK Overseas Research Student award. We thank W. Wiechert (Forschungszüentrum Jülich GmbH) for permission to use 13C-FLUX and P. Spelluci (Fachbereich Mathematik, Technische Universität Darmstadt, Germany) for developing the Donlp2 algorithm.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kruger, N.J., Masakapalli, S.K., Ratcliffe, R.G. (2014). Optimization of Steady-State 13C-Labeling Experiments for Metabolic Flux Analysis. In: Dieuaide-Noubhani, M., Alonso, A. (eds) Plant Metabolic Flux Analysis. Methods in Molecular Biology, vol 1090. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-688-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-688-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-687-0

  • Online ISBN: 978-1-62703-688-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics