Skip to main content

Flux Variability Analysis: Application to Developing Oilseed Rape Embryos Using Toolboxes for Constraint-Based Modeling

  • Protocol
  • First Online:
Plant Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1090))

Abstract

Flux variability analysis enables comprehensive exploration of alternate optimal routes in a metabolic network. This method is especially useful with models such as bna572 for the developing oilseed rape embryo which is highly compartmentalized. Here, we describe a protocol for carrying out flux variability analysis on reactions and network projections of bna572 using well-established software (CellNetAnalyzer and COBRA) for constraint-based analysis of stoichiometric network reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palsson B (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    Article  PubMed  CAS  Google Scholar 

  3. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132(2):453–460

    Article  PubMed  CAS  Google Scholar 

  4. Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  PubMed  CAS  Google Scholar 

  5. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  6. Troncoso-Ponce MA, Kilaru A, Cao X et al (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J 68(6):1014–1027

    Article  PubMed  CAS  Google Scholar 

  7. Williams TC, Poolman MG, Howden AJ et al (2010) A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Plant Physiol 154(1):311–323

    Article  PubMed  CAS  Google Scholar 

  8. Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151(3):1570–1581

    Article  PubMed  CAS  Google Scholar 

  9. Pilalis E, Chatziioannou A, Thomasset B, Kolisis F (2011) An in silico compartmentalized metabolic model of Brassica napus enables the systemic study of regulatory aspects of plant central metabolism. Biotechnol Bioeng 108(7):1673–1682

    Article  PubMed  CAS  Google Scholar 

  10. Hay J, Schwender J (2011) Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos. Plant J 67(3):526–541

    Article  PubMed  CAS  Google Scholar 

  11. Hay J, Schwender J (2011) Computational analysis of storage synthesis in developing Brassica napus L. (oilseed rape) embryos: flux variability analysis in relation to 13C metabolic flux analysis. Plant J 67(3):513–525

    Article  PubMed  CAS  Google Scholar 

  12. Mintz-Oron S, Meir S, Malitsky S et al (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci U S A 109(1):339–344

    Article  PubMed  CAS  Google Scholar 

  13. de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW et al (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152(2):579–589

    Article  PubMed  Google Scholar 

  14. Schwender J (2008) Metabolic flux analysis as a tool in metabolic engineering of plants. Curr Opin Biotechnol 19(2):131–137

    Article  PubMed  CAS  Google Scholar 

  15. Saha R, Suthers PF, Maranas CD (2011) Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One 6(7):e21784

    Article  PubMed  CAS  Google Scholar 

  16. Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149(1):585–598

    Article  PubMed  CAS  Google Scholar 

  17. Schwender J, Hay JO (2012) Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism. Plant Physiol 160(3):1218–1236

    Google Scholar 

  18. Klamt S, Stelling J (2002) Combinatorial complexity of pathway analysis in metabolic networks. Mol Biol Rep 29(1–2):233–236

    Article  PubMed  CAS  Google Scholar 

  19. Boyle NR, Shastri AA, Morgan JA (2009) Network stoichiometry. In: Schwender J (ed) Plant metabolic networks. Springer, New York, pp 211–243

    Chapter  Google Scholar 

  20. Sweetlove LJ, Ratcliffe RG (2011) Flux-balance modeling of plant metabolism. Front Plant Sci 2:38

    Article  PubMed  CAS  Google Scholar 

  21. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–130

    Article  PubMed  CAS  Google Scholar 

  22. Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1

    Article  PubMed  CAS  Google Scholar 

  23. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97(10):5528–5533

    Article  PubMed  CAS  Google Scholar 

  24. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276

    Article  PubMed  CAS  Google Scholar 

  25. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  PubMed  Google Scholar 

  26. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 1:2

    Article  PubMed  Google Scholar 

  27. Schellenberger J, Que R, Fleming RM et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307

    Article  PubMed  CAS  Google Scholar 

  28. Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738

    Article  PubMed  CAS  Google Scholar 

  29. Burgard AP, Pharkya P, Maranas CD (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657

    Article  PubMed  CAS  Google Scholar 

  30. Sègre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99(23):15112–15117

    Article  PubMed  Google Scholar 

  31. Baud S, Dubreucq B, Miquel M et al (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6:e0113

    Article  PubMed  Google Scholar 

  32. http://www.gnu.org/software/glpk/ GLPK (GNU Linear Programming Kit)

  33. Schwender J (2011) Experimental flux measurements on a network scale. Front Plant Sci 2:63

    Article  PubMed  CAS  Google Scholar 

  34. Price ND, Thiele I, Palsson BO (2006) Candidate states of Helicobacter pylori’s genome-scale metabolic network upon application of “loop law” thermodynamic constraints. Biophys J 90(11):3919–3928

    Article  PubMed  CAS  Google Scholar 

  35. Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Griffin St. Clair and Dr. Zhijie Sun for helpful discussions. We gratefully acknowledge funding from the US Department of Energy (Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, Field Work Proposal BO-133).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Hay, J.O., Schwender, J. (2014). Flux Variability Analysis: Application to Developing Oilseed Rape Embryos Using Toolboxes for Constraint-Based Modeling. In: Dieuaide-Noubhani, M., Alonso, A. (eds) Plant Metabolic Flux Analysis. Methods in Molecular Biology, vol 1090. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-688-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-688-7_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-687-0

  • Online ISBN: 978-1-62703-688-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics