Skip to main content

The Use of Chromatin Immunoprecipitation (ChIP) to Study the Binding of Viral Proteins to the Adenovirus Genome In Vivo

  • Protocol
  • First Online:
Adenovirus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1089))

Abstract

The encapsidation of adenovirus (Ad) DNA into virus particles depends on cis-acting sequences located at the left end of the viral genome. Repeated DNA sequences in the packaging domain contribute to viral DNA encapsidation and several viral proteins bind to these repeats when analyzed using in vitro DNA–protein binding assays. In this chapter, we describe a chromatin immunoprecipitation (ChIP) approach to study the binding of viral proteins to packaging sequences in vivo. This assay permits accurate quantification over a wide range of DNA concentrations. The use of formaldehyde cross-linking to stabilize DNA–protein and protein–protein complexes formed in vivo allows the identification of macromolecular complexes found in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostapchuk P, Hearing P (2003) Regulation of adenovirus packaging. Curr Top Microbiol Immunol 272:165–185

    Article  PubMed  CAS  Google Scholar 

  2. Schmid SI, Hearing P (1997) Bipartite structure and functional independence of adenovirus type 5 packaging elements. J Virol 71:3375–3384

    PubMed  CAS  Google Scholar 

  3. Schmid SI, Hearing P (1998) Cellular components interact with adenovirus type 5 minimal DNA packaging domains. J Virol 72:6339–6347

    PubMed  CAS  Google Scholar 

  4. Gustin KE, Lutz P, Imperiale MJ (1996) Interaction of the adenovirus L1 52/55-kilodalton protein with the IVa2 gene product during infection. J Virol 70:6463–6467

    PubMed  CAS  Google Scholar 

  5. Hasson TB, Soloway PD, Ornelles DA, Doerfler W, Shenk T (1989) Adenovirus L1 52- and 55-kilodalton proteins are required for assembly of virions. J Virol 63:3612–3621

    PubMed  CAS  Google Scholar 

  6. Zhang W, Imperiale MJ (2003) Requirement of the adenovirus IVa2 protein for virus assembly. J Virol 77:3586–3594

    Article  PubMed  CAS  Google Scholar 

  7. Zhang W, Low JA, Christensen JB, Imperiale MJ (2001) Role for the adenovirus IVa2 protein in packaging of viral DNA. J Virol 75:10446–10454

    Article  PubMed  CAS  Google Scholar 

  8. Zhang W, Imperiale MJ (2000) Interaction of the adenovirus IVa2 protein with viral packaging sequences. J Virol 74:2687–2693

    Article  PubMed  CAS  Google Scholar 

  9. Ma HC, Hearing P (2011) Adenovirus structural protein IIIa is involved in the serotype specificity of viral DNA packaging. J Virol 85:7849–7855

    Article  PubMed  CAS  Google Scholar 

  10. Wu K, Orozco D, Hearing P (2012) The Adenovirus L4-22K protein is multifunctional and is an integral component of crucial aspects of infection. J Virol 86:10474–10483

    Article  PubMed  CAS  Google Scholar 

  11. Ostapchuk P, Yang J, Auffarth E, Hearing P (2005) Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences. J Virol 79:2831–2838

    Article  PubMed  CAS  Google Scholar 

  12. Schepers A, Ritzi M, Bousset K, Kremmer E, Yates JL, Harwood J, Diffley JF, Hammerschmidt W (2001) Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J 20:4588–4602

    Article  PubMed  CAS  Google Scholar 

  13. Wells J, Graveel CR, Bartley SM, Madore SJ, Farnham PJ (2002) The identification of E2F1-specific target genes. Proc Natl Acad Sci U S A 99:3890–3895

    Article  PubMed  CAS  Google Scholar 

  14. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1:179–185

    Article  PubMed  CAS  Google Scholar 

  15. Schiedner G, Hertel S, Kochanek S (2000) Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum Gene Ther 11:2105–2116

    Article  PubMed  CAS  Google Scholar 

  16. Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M (1996) Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 70:4805–4810

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zheng, Y., Hearing, P. (2014). The Use of Chromatin Immunoprecipitation (ChIP) to Study the Binding of Viral Proteins to the Adenovirus Genome In Vivo. In: Chillón, M., Bosch, A. (eds) Adenovirus. Methods in Molecular Biology, vol 1089. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-679-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-679-5_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-678-8

  • Online ISBN: 978-1-62703-679-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics