Skip to main content

Intravital Microscopy and Its Application to Study Regulated Exocytosis in the Exocrine Glands of Live Rodents

  • Protocol
  • First Online:
Exocytosis Methods

Part of the book series: Neuromethods ((NM,volume 83))

  • 745 Accesses

Abstract

Regulated exocytosis is a fundamental event in specialized secretory organs that has been primarily studied in in vitro and ex vivo model systems. The recent application of intravital microscopy to image subcellular structures in vivo has enabled researchers to investigate the machinery controlling regulated exocytosis in live rodents. Here, we describe selected experimental models that have been used to investigate the dynamics of the secretory granules after their initial fusion their with the plasma membrane. Specifically, we used rodent salivary glands, an established model for exocrine secretion. Our goal is to provide the reader with guidelines on how to apply both qualitative and quantitative intravital microscopy to study regulated exocytosis and to highlight advantages and limitations of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632

    PubMed  CAS  Google Scholar 

  2. Porat-Shliom N, Milberg O, Masedunskas A, Weigert R (2013) Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 70(12):2099–2121

    Article  PubMed  CAS  Google Scholar 

  3. Sudhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 3

    Google Scholar 

  4. De Matteis MA, Luini A (2008) Exiting the golgi complex. Nat Rev Mol Cell Biol 9:273–284

    Article  PubMed  Google Scholar 

  5. Luini A, Mironov AA, Polishchuk EV, Polishchuk RS (2008) Morphogenesis of post-Golgi transport carriers. Histochem Cell Biol 129:153–161

    Article  PubMed  CAS  Google Scholar 

  6. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  7. Petersen OH (2003) Localization and regulation of Ca2+ entry and exit pathways in exocrine gland cells. Cell Calcium 33:337–344

    Article  PubMed  CAS  Google Scholar 

  8. Seino S, Shibasaki T (2005) Pka-dependent and pka-independent pathways for camp-regulated exocytosis. Physiol Rev 85:1303–1342

    Article  PubMed  CAS  Google Scholar 

  9. Hou JC, Min L, Pessin JE (2009) Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm 80:473–506

    Article  PubMed  CAS  Google Scholar 

  10. Malacombe M, Bader MF, Gasman S (2006) Exocytosis in neuroendocrine cells: new tasks for actin. Biochim Biophys Acta 1763:1175–1183

    Article  PubMed  CAS  Google Scholar 

  11. Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N (2006) Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 58:850–877

    Article  PubMed  CAS  Google Scholar 

  12. Masedunskas A, Porat-Shliom N, Weigert R (2012) Linking differences in membrane tension with the requirement for a contractile actomyosin scaffold during exocytosis in salivary glands. Commun Integr Biol 5:84–87

    Article  PubMed  CAS  Google Scholar 

  13. Masedunskas A, Sramkova M, Parente L et al (2011) Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy. Proc Natl Acad Sci U S A 108:13552–13557

    Article  PubMed  CAS  Google Scholar 

  14. Pickett JA, Edwardson JM (2006) Compound exocytosis: mechanisms and functional significance. Traffic 7:109–116

    Article  PubMed  CAS  Google Scholar 

  15. Thorn P, Parker I (2005) Two phases of zymogen granule lifetime in mouse pancreas: Ghost granules linger after exocytosis of contents. J Physiol 563:433–442

    Article  PubMed  CAS  Google Scholar 

  16. Khandelwal P, Ruiz WG, Apodaca G (2010) Compensatory endocytosis in bladder umbrella cells occurs through an integrin-regulated and rhoa- and dynamin-dependent pathway. EMBO J 29:1961–1975

    Article  PubMed  CAS  Google Scholar 

  17. Masedunskas A, Sramkova M, Weigert R (2011) Homeostasis of the apical plasma membrane during regulated exocytosis in the salivary glands of live rodents. Bioarchitecture 1:225–229

    Article  PubMed  Google Scholar 

  18. Sramkova M, Masedunskas A, Parente L, Molinolo A, Weigert R (2009) Expression of plasmid DNA in the salivary gland epithelium: novel approaches to study dynamic cellular processes in live animals. Am J Physiol Cell Physiol 297:C1347–C1357

    Article  PubMed  CAS  Google Scholar 

  19. Jerdeva GV, Wu K, Yarber FA et al (2005) Actin and non-muscle myosin ii facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells. J Cell Sci 118:4797–4812

    Article  PubMed  CAS  Google Scholar 

  20. Nightingale TD, Cutler DF, Cramer LP (2012) Actin coats and rings promote regulated exocytosis. Trends Cell Biol 22(6):329–337

    Article  PubMed  CAS  Google Scholar 

  21. Larina O, Bhat P, Pickett JA et al (2007) Dynamic regulation of the large exocytotic fusion pore in pancreatic acinar cells. Mol Biol Cell 18:3502–3511

    Article  PubMed  CAS  Google Scholar 

  22. Nemoto T, Kojima T, Oshima A, Bito H, Kasai H (2004) Stabilization of exocytosis by dynamic f-actin coating of zymogen granules in pancreatic acini. J Biol Chem 279:37544–37550

    Article  PubMed  CAS  Google Scholar 

  23. Gorr SU, Venkatesh SG, Darling DS (2005) Parotid secretory granules: crossroads of secretory pathways and protein storage. J Dent Res 84:500–509

    Article  PubMed  CAS  Google Scholar 

  24. Kasai H, Hatakeyama H, Kishimoto T, Liu TT, Nemoto T, Takahashi N (2005) A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (tepiq)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets. J Physiol 568:891–903

    Article  PubMed  CAS  Google Scholar 

  25. Castle AM, Huang AY, Castle JD (2002) The minor regulated pathway, a rapid component of salivary secretion, may provide docking/fusion sites for granule exocytosis at the apical surface of acinar cells. J Cell Sci 115:2963–2973

    PubMed  CAS  Google Scholar 

  26. Castle JD (1998) Protein secretion by rat parotid acinar cells. Pathways and regulation. Ann N Y Acad Sci 842:115–124

    Article  PubMed  CAS  Google Scholar 

  27. Chen Y, Warner JD, Yule DI, Giovannucci DR (2005) Spatiotemporal analysis of exocytosis in mouse parotid acinar cells. Am J Physiol Cell Physiol 289:C1209–C1219

    Article  PubMed  CAS  Google Scholar 

  28. Warner JD, Peters CG, Saunders R et al (2008) Visualizing form and function in organotypic slices of the adult mouse parotid gland. Am J Physiol Gastrointest Liver Physiol 295:G629–G640

    Article  PubMed  CAS  Google Scholar 

  29. Proctor GB, Carpenter GH (2007) Regulation of salivary gland function by autonomic nerves. Auton Neurosci 133:3–18

    Article  PubMed  CAS  Google Scholar 

  30. Behrendorff N, Dolai S, Hong W, Gaisano HY, Thorn P (2011) Vesicle-associated membrane protein 8 (vamp8) is a snare (soluble n-ethylmaleimide-sensitive factor attachment protein receptor) selectively required for sequential granule-to-granule fusion. J Biol Chem 286:29627–29634

    Article  PubMed  CAS  Google Scholar 

  31. Nemoto T, Kimura R, Ito K et al (2001) Sequential-replenishment mechanism of exocytosis in pancreatic acini. Nat Cell Biol 3:253–258

    Article  PubMed  CAS  Google Scholar 

  32. Segawa A, Riva A (1996) Dynamics of salivary secretion studied by confocal laser and scanning electron microscopy. Eur J Morphol 34:215–219

    Article  PubMed  CAS  Google Scholar 

  33. Segawa A, Terakawa S, Yamashina S, Hopkins CR (1991) Exocytosis in living salivary glands: direct visualization by video-enhanced microscopy and confocal laser microscopy. Eur J Cell Biol 54:322–330

    PubMed  CAS  Google Scholar 

  34. Pickett JA, Thorn P, Edwardson JM (2005) The plasma membrane q-snare syntaxin 2 enters the zymogen granule membrane during exocytosis in the pancreatic acinar cell. J Biol Chem 280:1506–1511

    Article  PubMed  CAS  Google Scholar 

  35. Thorn P, Fogarty KE, Parker I (2004) Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc Natl Acad Sci U S A 101:6774–6779

    Article  PubMed  CAS  Google Scholar 

  36. Fernandez NA, Liang T, Gaisano HY (2011) Live pancreatic acinar imaging of exocytosis using syncollin–phluorin. Am J Physiol Cell Physiol 300:C1513–C1523

    Article  PubMed  CAS  Google Scholar 

  37. Masedunskas A, Weigert R (2008) Internalization of fluorescent dextrans in the submandibular salivary glands of live animals: a study combining intravital two-photon microscopy and second harmonic generation. SPIE, In, pp 68601V–68612V

    Google Scholar 

  38. Peter B, Van Waarde MA, Vissink A, s-Gravenmade EJ, Konings AW (1995) Degranulation of rat salivary glands following treatment with receptor-selective agonists. Clin Exp Pharmacol Physiol 22:330–336

    Article  PubMed  CAS  Google Scholar 

  39. Masedunskas A, Sramkova M, Parente L, Weigert R (2013) Intravital microscopy to image membrane traffickingin live rats Cell imaging techniques. Methods Mol Biol 931:153–167

    Article  PubMed  CAS  Google Scholar 

  40. Masedunskas A, Weigert R (2008) Intravital two-photon microscopy for studying the uptake and trafficking of fluorescently conjugated molecules in live rodents. Traffic 9:1801–1810

    Article  PubMed  CAS  Google Scholar 

  41. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  PubMed  CAS  Google Scholar 

  42. Weigert R, Sramkova M, Parente L, Amornphimoltham P, Masedunskas A (2010) Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 133:481–491

    Article  PubMed  CAS  Google Scholar 

  43. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    Article  PubMed  CAS  Google Scholar 

  44. Cahalan MD, Parker I (2008) Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 26:585–626

    Article  PubMed  CAS  Google Scholar 

  45. Germain RN, Castellino F, Chieppa M et al (2005) An extended vision for dynamic high-resolution intravital immune imaging. Semin Immunol 17:431–441

    Article  PubMed  CAS  Google Scholar 

  46. Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130:1147–1154

    Article  PubMed  CAS  Google Scholar 

  47. Amornphimoltham P, Masedunskas A, Weigert R (2011) Intravital microscopy as a tool to study drug delivery in preclinical studies. Adv Drug Deliv Rev 63:119–128

    Article  PubMed  CAS  Google Scholar 

  48. Ritsma L, Ponsioen B, van Rheenen J (2012) Intravital imaging of cell signaling in mice. Intravital 1:2–10

    Article  Google Scholar 

  49. Dunn KW, Sandoval RM, Kelly KJ et al (2002) Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 283:C905–C916

    Article  PubMed  CAS  Google Scholar 

  50. Sandoval RM, Kennedy MD, Low PS, Molitoris BA (2004) Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am J Physiol Cell Physiol 287:C517–C526

    Article  PubMed  CAS  Google Scholar 

  51. Masedunskas A, Milberg O, Porat-Shliom N et al (2012) Intravital microscopy: a practical guide on imaging intracellular structures in live animals. Bioarchitecture 2

    Google Scholar 

  52. Masedunskas A, Porat-Shliom N, Weigert R (2012) Regulated exocytosis: novel insights from intravital microscopy. Traffic 13:627–634

    Article  PubMed  CAS  Google Scholar 

  53. Sramkova M, Masedunskas A, Weigert R (2012) Plasmid DNA is internalized from the apical plasma membrane of the salivary gland epithelium in live animals. Histochem Cell Biol 138(2):201–213

    Article  PubMed  CAS  Google Scholar 

  54. Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M, Nagy A (1998) Generating green fluorescent mice by germline transmission of green fluorescent es cells. Mech Dev 76:79–90

    Article  PubMed  CAS  Google Scholar 

  55. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent cre reporter mouse. Genesis 45:593–605

    Article  PubMed  CAS  Google Scholar 

  56. Bhat P, Thorn P (2009) Myosin 2 maintains an open exocytic fusion pore in secretory epithelial cells. Mol Biol Cell 20:1795–1803

    Article  PubMed  CAS  Google Scholar 

  57. Mazariegos MR, Tice LW, Hand AR (1984) Alteration of tight junctional permeability in the rat parotid gland after isoproterenol stimulation. J Cell Biol 98:1865–1877

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Institute of Dental, and Craniofacial Research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Milberg, O., Porat-Shliom, N., Tora, M., Parente, L., Masedunskas, A., Weigert, R. (2014). Intravital Microscopy and Its Application to Study Regulated Exocytosis in the Exocrine Glands of Live Rodents. In: Thorn, P. (eds) Exocytosis Methods. Neuromethods, vol 83. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-676-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-676-4_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-675-7

  • Online ISBN: 978-1-62703-676-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics