Skip to main content

Bioprospecting Open Reading Frames for Peptide Effectors

  • Protocol
  • First Online:
Therapeutic Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1088))

  • 2849 Accesses

Abstract

Recent successes in the development of small-molecule antagonists of protein–protein interactions designed based on co-crystal structures of peptides bound to their biological targets confirm that short peptides derived from interacting proteins can be high-value ligands for pharmacologic validation of targets and for identification of druggable sites. Evolved sequence space is likely to be enriched for interacting peptides, but identifying minimal peptide effectors within genomic sequence can be labor intensive. Here we describe the use of incremental truncation to diversify genetic material on the scale of open reading frames into comprehensive libraries of constituent peptides. The approach is capable of generating peptides derived from both continuous and discontinuous sequence elements, and is compatible with the expression of free linear or backbone cyclic peptides, with peptides tethered to amino- or carboxyl-terminal fusion partners or with the expression of peptides displayed within protein scaffolds (peptide aptamers). Incremental truncation affords a valuable source of molecular diversity to interrogate the druggable genome or evaluate the therapeutic potential of candidate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5:821–834

    Article  PubMed  CAS  Google Scholar 

  2. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  PubMed  CAS  Google Scholar 

  3. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  4. Chatterjee-Kishore M, Miller CP (2005) Exploring the sounds of silence: RNAi-mediated gene silencing for target identification and validation. Drug Discov Today 10:1559–1565

    Article  PubMed  CAS  Google Scholar 

  5. Houdebine LM (2007) Transgenic animal models in biomedical research. Methods Mol Biol 360:163–202

    PubMed  CAS  Google Scholar 

  6. Drews J (2006) What’s in a number? Nat Rev Drug Discov 5:975

    Article  PubMed  CAS  Google Scholar 

  7. Drews J, Ryser S (1997) The role of innovation in drug development. Nat Biotechnol 15:1318–1319

    Article  PubMed  CAS  Google Scholar 

  8. Reichert JM (2003) Trends in development and approval times for new therapeutics in the United States. Nat Rev Drug Discov 2:695–702

    Article  PubMed  CAS  Google Scholar 

  9. Sams-Dodd F (2005) Target-based drug discovery: is something wrong? Drug Discov Today 10:139–147

    Article  PubMed  CAS  Google Scholar 

  10. Swindells MB, Overington JP (2002) Prioritizing the proteome: identifying pharmaceutically relevant targets. Drug Discov Today 7:516–521

    Article  PubMed  CAS  Google Scholar 

  11. Marshall A (2008) Raising the game. Nat Biotechnol 26:137

    Google Scholar 

  12. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009

    Article  PubMed  CAS  Google Scholar 

  13. Devos D, Russell RB (2007) A more complete, complexed and structured interactome. Curr Opin Struct Biol 17:370–377

    Article  PubMed  CAS  Google Scholar 

  14. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  PubMed  CAS  Google Scholar 

  15. Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, Swift K, Matayoshi ED, Zhang H, Thompson CB, Fesik SW (2000) Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci 9:2528–2534

    PubMed  CAS  Google Scholar 

  16. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  PubMed  CAS  Google Scholar 

  17. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  PubMed  CAS  Google Scholar 

  18. Griswold KE, Kawarasaki Y, Ghoneim N, Benkovic SJ, Iverson BL, Georgiou G (2005) Evolution of highly active enzymes by homology-independent recombination. Proc Natl Acad Sci U S A 102:10082–10087

    Article  PubMed  CAS  Google Scholar 

  19. Kawarasaki Y, Griswold KE, Stevenson JD, Selzer T, Benkovic SJ, Iverson BL, Georgiou G (2003) Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res 31:e126

    Article  PubMed  Google Scholar 

  20. Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D (2004) Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci U S A 101:12288–12293

    Article  PubMed  CAS  Google Scholar 

  21. Lutz S, Ostermeier M, Benkovic SJ (2001) Rapid generation of incremental truncation libraries for protein engineering using alpha-phosphothioate nucleotides. Nucleic Acids Res 29:E16

    Article  PubMed  CAS  Google Scholar 

  22. Lutz S, Ostermeier M, Moore GL, Maranas CD, Benkovic SJ (2001) Creating multiple-crossover DNA libraries independent of sequence identity. Proc Natl Acad Sci U S A 98:11248–11253

    Article  PubMed  CAS  Google Scholar 

  23. Ostermeier M, Nixon AE, Shim JH, Benkovic SJ (1999) Combinatorial protein engineering by incremental truncation. Proc Natl Acad Sci U S A 96:3562–3567

    Article  PubMed  CAS  Google Scholar 

  24. Ostermeier M, Shim JH, Benkovic SJ (1999) A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol 17:1205–1209

    Article  PubMed  CAS  Google Scholar 

  25. Park SH, Park HY, Sohng JK, Lee HC, Liou K, Yoon YJ, Kim BG (2009) Expanding substrate specificity of GT-B fold glycosyltransferase via domain swapping and high-throughput screening. Biotechnol Bioeng 102:988–994

    Article  PubMed  CAS  Google Scholar 

  26. Tarendeau F, Boudet J, Guilligay D, Mas PJ, Bougault CM, Boulo S, Baudin F, Ruigrok RW, Daigle N, Ellenberg J, Cusack S, Simorre JP, Hart DJ (2007) Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol 14:229–233

    Article  PubMed  CAS  Google Scholar 

  27. Whitehead TA, Je E, Clark DS (2009) Rational shape engineering of the filamentous protein gamma prefoldin through incremental gene truncation. Biopolymers 91:496–503

    Article  PubMed  CAS  Google Scholar 

  28. Yadid I, Tawfik DS (2007) Reconstruction of functional beta-propeller lectins via homo-oligomeric assembly of shorter fragments. J Mol Biol 365:10–17

    Article  PubMed  CAS  Google Scholar 

  29. Norman TC, Smith DL, Sorger PK, Drees BL, O’Rourke SM, Hughes TR, Roberts CJ, Friend SH, Fields S, Murray AW (1999) Genetic selection of peptide inhibitors of biological pathways. Science 285:591–595

    Article  PubMed  CAS  Google Scholar 

  30. Abedi MR, Caponigro G, Kamb A (1998) Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res 26:623–630

    Article  PubMed  CAS  Google Scholar 

  31. Geyer CR, Colman-Lerner A, Brent R (1999) "Mutagenesis" by peptide aptamers identifies genetic network members and pathway connections. Proc Natl Acad Sci U S A 96:8567–8572

    Article  PubMed  CAS  Google Scholar 

  32. Saleh L, Perler FB (2006) Protein splicing in cis and in trans. Chem Rec 6:183–193

    Article  PubMed  CAS  Google Scholar 

  33. Gudkov AV, Roninson IB (1997) Isolation of genetic suppressor elements (GSEs) from random fragment cDNA libraries in retroviral vectors. Methods Mol Biol 69:221–240

    PubMed  CAS  Google Scholar 

  34. Ostermeier M, Lutz S (2003) The creation of ITCHY hybrid protein libraries. Methods Mol Biol 231:129–141

    PubMed  CAS  Google Scholar 

  35. Ostermeier M, Nixon AE, Benkovic SJ (1999) Incremental truncation as a strategy in the engineering of novel biocatalysts. Bioorg Med Chem 7:2139–2144

    Article  PubMed  CAS  Google Scholar 

  36. Hoheisel JD (1993) On the activities of Escherichia coli exonuclease III. Anal Biochem 209:238–246

    Article  PubMed  CAS  Google Scholar 

  37. Kawarasaki Y, Sasaki Y, Ikeuchi A, Yamamoto S, Yamane T (2002) A method for functional mapping of protein–protein binding domain by preferential amplification of the shortest amplicon using PCR. Anal Biochem 303:34–41

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Eileen Burke, Shirish Damle, and Alex Smith for material contributions and helpful discussions. This work was supported by National Institutes of Health grant R01-AI053800 (awarded to CPS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xiong, L., Scott, C. (2014). Bioprospecting Open Reading Frames for Peptide Effectors. In: Nixon, A. (eds) Therapeutic Peptides. Methods in Molecular Biology, vol 1088. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-673-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-673-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-672-6

  • Online ISBN: 978-1-62703-673-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics