Skip to main content

Single-Copy Quantification of HIV-1 in Clinical Samples

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1087))

Abstract

HIV replication in humans proceeds with substantial viral RNA levels in plasma. Antiretroviral therapy results in suppression but not eradication of HIV infection. Continuous therapy is essential for durable clinical responses. Discontinuing antiretroviral therapy results in prompt rebound in viremia. The source of HIV during suppressive therapy and mechanisms of persistence remain uncertain. Sensitive assays for HIV have been useful in quantifying viremia in response to antiretroviral therapy and in experimental studies of drug intensification, drug simplification, and potential anatomic sanctuary site investigations. As clinical eradication strategies move forward, robust, sensitive quantitative assays for HIV at low levels represent essential laboratory support modalities. Here we describe in detail an assay for HIV-1 RNA with single-copy sensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ibrahim SM, Aitichou M, Hardick J, Blow J, O’Guinn ML, Schmaljohn C (2011) Detection of Crimean-Congo hemorrhagic fever, Hanta, and sandfly fever viruses by real-time RT-PCR. Methods Mol Biol 665:357–368

    Article  CAS  PubMed  Google Scholar 

  2. Stahlberg A, Kubista M, Aman P (2011) Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev Mol Diagn 11(7):735–740

    Article  CAS  PubMed  Google Scholar 

  3. Guarino A, Giannattasio A (2011) New molecular approaches in the diagnosis of acute diarrhea: advantages for clinicians and researchers. Curr Opin Gastroenterol 27(1):24–29

    Article  PubMed  Google Scholar 

  4. O’Connor L, Glynn B (2010) Recent advances in the development of nucleic acid diagnostics. Expert Rev Med Devices 7(4):529–539

    Article  PubMed  Google Scholar 

  5. Khot PD, Fredricks DN (2009) PCR-based diagnosis of human fungal infections. Expert Rev Anti Infect Ther 7(10):1201–1221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pasqualini L, Mencacci A, Leli C et al (2012) Diagnostic performance of a multiple real-time PCR assay in patients with suspected sepsis hospitalized in an internal medicine ward. J Clin Microbiol 50(4):1285–1288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lyles RH, Chu C, Mellors JW et al (1999) Prognostic value of plasma HIV RNA in the natural history of Pneumocystis carinii pneumonia, cytomegalovirus and Mycobacterium avium complex. Multicenter AIDS Cohort Study. AIDS 13(3):341–349

    Article  CAS  PubMed  Google Scholar 

  8. Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA (1996) Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272(5265): 1167–1170

    Article  CAS  PubMed  Google Scholar 

  9. Tarwater PM, Gallant JE, Mellors JW et al (2004) Prognostic value of plasma HIV RNA among highly active antiretroviral therapy users. AIDS 18(18):2419–2423

    PubMed  Google Scholar 

  10. Dewar RL, Highbarger HC, Sarmiento MD et al (1994) Application of branched DNA signal amplification to monitor human immunodeficiency virus type 1 burden in human plasma. J Infect Dis 170(5):1172–1179

    Article  CAS  PubMed  Google Scholar 

  11. Elbeik T, Alvord WG, Trichavaroj R et al (2002) Comparative analysis of HIV-1 viral load assays on subtype quantification: Bayer Versant HIV-1 RNA 3.0 versus Roche Amplicor HIV-1 Monitor version 1.5. J Acquir Immune Defic Syndr 29(4):330–339

    Article  CAS  PubMed  Google Scholar 

  12. Highbarger HC, Alvord WG, Jiang MK et al (1999) Comparison of the Quantiplex version 3.0 assay and a sensitized Amplicor monitor assay for measurement of human immunodeficiency virus type 1 RNA levels in plasma samples. J Clin Microbiol 37(11):3612–3614

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Swanson P, Holzmayer V, Huang S et al (2006) Performance of the automated Abbott RealTime HIV-1 assay on a genetically diverse panel of specimens from London: comparison to VERSANT HIV-1 RNA 3.0, AMPLICOR HIV-1 MONITOR v1.5, and LCx HIV RNA Quantitative assays. J Virol Methods 137(2): 184–192

    Article  CAS  PubMed  Google Scholar 

  14. Katsoulidou A, Petrodaskalaki M, Sypsa V et al (2006) Evaluation of the clinical sensitivity for the quantification of human immunodeficiency virus type 1 RNA in plasma: comparison of the new COBAS TaqMan HIV-1 with three current HIV-RNA assays–LCx HIV RNA quantitative, VERSANT HIV-1 RNA 3.0 (bDNA) and COBAS AMPLICOR HIV-1 Monitor v1.5. J Virol Methods 131(2):168–174

    Article  CAS  PubMed  Google Scholar 

  15. Berger A, Scherzed L, Sturmer M, Preiser W, Doerr HW, Rabenau HF (2005) Comparative evaluation of the Cobas Amplicor HIV-1 Monitor Ultrasensitive Test, the new Cobas AmpliPrep/Cobas Amplicor HIV-1 Monitor Ultrasensitive Test and the Versant HIV RNA 3.0 assays for quantitation of HIV-1 RNA in plasma samples. J Clin Virol 33(1):43–51

    Article  CAS  PubMed  Google Scholar 

  16. Dornadula G, Zhang H, VanUitert B et al (1999) Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA 282(17):1627–1632

    Article  CAS  PubMed  Google Scholar 

  17. Wong JK, Hezareh M, Gunthard HF et al (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278(5341):1291–1295

    Article  CAS  PubMed  Google Scholar 

  18. Davey RT Jr, Bhat N, Yoder C et al (1999) HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci USA 96(26):15109–15114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Maldarelli F (2011) Targeting viral reservoirs: ability of antiretroviral therapy to stop viral replication. Curr Opin HIV AIDS 6(1):49–56

    Article  PubMed  Google Scholar 

  20. Hatano H, Delwart EL, Norris PJ et al (2010) Evidence of persistent low-level viremia in long-term HAART-suppressed, HIV-infected individuals. AIDS 24(16):2535–2539

    Article  PubMed Central  PubMed  Google Scholar 

  21. Palmer S, Wiegand AP, Maldarelli F et al (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41(10):4531–4536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Maldarelli F, Palmer S, King MS et al (2007) ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog 3(4):e46

    Article  PubMed Central  PubMed  Google Scholar 

  23. Palmer S, Maldarelli F, Wiegand A et al (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 105(10):3879–3884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dinoso JB, Kim SY, Wiegand AM et al (2009) Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc Natl Acad Sci USA 106(23):9403–9408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gandhi RT, Zheng L, Bosch RJ et al (2010) The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med 7(8)

    Google Scholar 

  26. Hatano H, Hayes TL, Dahl V et al (2011) A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response. J Infect Dis 203(7):960–968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McMahon D, Jones J, Wiegand A et al (2010) Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy. Clin Infect Dis 50(6):912–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Buzon MJ, Massanella M, Llibre JM et al (2010) HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 16(4):460–465

    Article  PubMed  Google Scholar 

  29. Dahl V, Lee E, Peterson J et al (2011) Raltegravir treatment intensification does not alter cerebrospinal fluid HIV-1 infection or immunoactivation in subjects on suppressive therapy. J Infect Dis 204(12):1936–1945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Josefsson L, King MS, Makitalo B et al (2011) Majority of CD4+ T cells from peripheral blood of HIV-1-infected individuals contain only one HIV DNA molecule. Proc Natl Acad Sci USA 108(27):11199–11204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Grant PM, Palmer S, Bendavid E et al (2009) Switch from enfuvirtide to raltegravir in virologically suppressed HIV-1 infected patients: effects on level of residual viremia and quality of life. J Clin Virol 46(4):305–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wilkin TJ, McKinnon JE, DiRienzo AG et al (2009) Regimen simplification to atazanavir-ritonavir alone as maintenance antiretroviral therapy: final 48-week clinical and virologic outcomes. J Infect Dis 199(6):866–871

    Article  PubMed Central  PubMed  Google Scholar 

  33. Archin NM, Eron JJ, Palmer S et al (2008) Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS 22(10):1131–1135

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wiegand, A., Maldarelli, F. (2014). Single-Copy Quantification of HIV-1 in Clinical Samples. In: Vicenzi, E., Poli, G. (eds) Human Retroviruses. Methods in Molecular Biology, vol 1087. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-670-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-670-2_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-669-6

  • Online ISBN: 978-1-62703-670-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics