Skip to main content

Chemical Probing of RNA in Living Cells

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1086))

Abstract

RNAs need to adopt a specific architecture to exert their task in cells. While significant progress has been made in describing RNA folding landscapes in vitro, understanding intracellular RNA structure formation is still in its infancy. This is in part due to the complex nature of the cellular environment but also to the limited availability of suitable methodologies. To assess the intracellular structure of large RNAs, we recently applied a chemical probing technique and a metal-induced cleavage assay in vivo. These methods are based on the fact that small molecules, like dimethyl sulfate (DMS), or metal ions, such as Pb2+, penetrate and spread throughout the cell very fast. Hence, these chemicals are able to modify accessible RNA residues or to induce cleavage of the RNA strand in the vicinity of a metal ion in living cells. Mapping of these incidents allows inferring information on the intracellular conformation, metal ion binding sites or ligand-induced structural changes of the respective RNA molecule. Importantly, in vivo chemical probing can be easily adapted to study RNAs in different cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brion P, Westhof E (1997) Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct 26:113–137

    Article  PubMed  CAS  Google Scholar 

  2. Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874

    PubMed  CAS  Google Scholar 

  3. Pyle AM, Fedorova O, Waldsich C (2007) Folding of group II introns: a model system for large, multidomain RNAs? Trends Biochem Sci 32:138–145

    Article  PubMed  CAS  Google Scholar 

  4. Schroeder R, Barta A, Semrad K (2004) Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 5:908–919

    Article  PubMed  CAS  Google Scholar 

  5. Sosnick TR, Pan T (2003) RNA folding: models and perspectives. Curr Opin Struct Biol 13:309–316

    Article  PubMed  CAS  Google Scholar 

  6. Treiber DK, Williamson JR (1999) Exposing the kinetic traps in RNA folding. Curr Opin Struct Biol 9:339–345

    Article  PubMed  CAS  Google Scholar 

  7. Treiber DK, Williamson JR (2001) Beyond kinetic traps in RNA folding. Curr Opin Struct Biol 11:309–314

    Article  PubMed  CAS  Google Scholar 

  8. Woodson SA (2000) Compact but disordered states of RNA. Nat Struct Biol 7:349–352

    Article  PubMed  CAS  Google Scholar 

  9. Woodson SA (2005) Structure and assembly of group I introns. Curr Opin Struct Biol 15:324–330

    Article  PubMed  CAS  Google Scholar 

  10. Woodson SA (2010) Compact intermediates in RNA folding. Annu Rev Biophys 39:61–77

    Article  PubMed  CAS  Google Scholar 

  11. Schroeder R, Grossberger R, Pichler A et al (2002) RNA Folding in vivo. Curr Opin Struct Biol 12:296–300

    Article  PubMed  CAS  Google Scholar 

  12. Zemora G, Waldsich C (2010) RNA folding in living cells. RNA Biol 7:634–641

    Article  PubMed  Google Scholar 

  13. Ares M Jr, Igel AH (1990) Lethal and temperature-sensitive mutations and their suppressors identify an essential structural element in U2 small nuclear RNA. Genes Dev 4:2132–2145

    Article  PubMed  CAS  Google Scholar 

  14. Balzer M, Wagner R (1998) Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing. J Mol Biol 276:547–557

    Article  PubMed  CAS  Google Scholar 

  15. Climie SC, Friesen JD (1988) In vivo and in vitro structural analysis of the rplJ mRNA leader of Escherichia coli. Protection by bound L10-L7/L12. J Biol Chem 263:15166–15175

    PubMed  CAS  Google Scholar 

  16. Doktycz MJ, Larimer FW, Pastrnak M et al (1998) Comparative analyses of the secondary structures of synthetic and intracellular yeast MFA2 mRNAs. Proc Natl Acad Sci USA 95:14614–14621

    Article  PubMed  CAS  Google Scholar 

  17. Harris ME, Pace NR (1995) Analysis of the tertiary structure of bacterial RNase P RNA. Mol Biol Rep 22:115–123

    Article  PubMed  CAS  Google Scholar 

  18. Liebeg A, Mayer O, Waldsich C (2010) DEAD-box protein facilitated RNA folding in vivo. RNA Biol 7:803–811

    Article  PubMed  CAS  Google Scholar 

  19. Mereau A, Fournier R, Gregoire A et al (1997) An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA. J Mol Biol 273:552–571

    Article  PubMed  CAS  Google Scholar 

  20. Moazed D, Robertson JM, Noller HF (1988) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334:362–364

    Article  PubMed  CAS  Google Scholar 

  21. Senecoff JF, Meagher RB (1992) In vivo analysis of plant RNA structure: soybean 18S ribosomal and ribulose-1,5-bisphosphate carboxylase small subunit RNAs. Plant Mol Biol 18:219–234

    Article  PubMed  CAS  Google Scholar 

  22. Waldsich C, Grossberger R, Schroeder R (2002) RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo. Genes Dev 16:2300–2312

    Article  PubMed  CAS  Google Scholar 

  23. Waldsich C, Masquida B, Westhof E et al (2002) Monitoring intermediate folding states of the td group I intron in vivo. EMBO J 21:5281–5291

    Article  PubMed  CAS  Google Scholar 

  24. Wells SE, Hughes JM, Igel AH et al (2000) Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol 318:479–493

    Article  PubMed  CAS  Google Scholar 

  25. Zaug AJ, Cech TR (1995) Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA 1:363–374

    PubMed  CAS  Google Scholar 

  26. Brunel C, Romby P (2000) Probing RNA structure and RNA-ligand complexes with chemical probes. Methods Enzymol 318:3–21

    Article  PubMed  CAS  Google Scholar 

  27. Ehresmann C, Baudin F, Mougel M et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  PubMed  CAS  Google Scholar 

  28. Erat MC, Sigel RK (2011) Methods to detect and characterize metal ion binding sites in RNA. Met Ions Life Sci 9:37–100

    Article  PubMed  CAS  Google Scholar 

  29. Lindell M, Brannvall M, Wagner EG et al (2005) Lead(II) cleavage analysis of RNase P RNA in vivo. RNA 11:1348–1354

    Article  PubMed  CAS  Google Scholar 

  30. Lindell M, Romby P, Wagner GH (2002) Lead (II) as a probe for investigating RNA structure in vivo. RNA 8:534–541

    Article  PubMed  CAS  Google Scholar 

  31. Sigel RK, Pyle AM (2003) Lanthanide ions as probes for metal ions in the structure and catalytic mechanism of ribozymes. Met Ions Biol Syst 40:477–512

    PubMed  CAS  Google Scholar 

  32. Huang HR, Rowe CE, Mohr S et al (2005) The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc Natl Acad Sci USA 102:163–168

    Article  PubMed  CAS  Google Scholar 

  33. Gregan J, Kolisek M, Schweyen RJ (2001) Mitochondrial Mg(2+) homeostasis is critical for group II intron splicing in vivo. Genes Dev 15:2229–2237

    Article  PubMed  CAS  Google Scholar 

  34. Halls C, Mohr S, Del Campo M et al (2007) Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. J Mol Biol 365:835–855

    Article  PubMed  CAS  Google Scholar 

  35. Solem A, Zingler N, Pyle AM (2006) A DEAD protein that activatesintron self-splicing without unwinding RNA. Mol Cell 24:611–617

    Article  PubMed  CAS  Google Scholar 

  36. Sigel R, Vaidya A, Pyle A (2000) Metal ion binding sites in a group II intron core. Nat Struct Biol 7:1111–1116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded by the Austrian Science Foundation (FWF; grants Y401 and P21017 to C.W.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wildauer, M., Zemora, G., Liebeg, A., Heisig, V., Waldsich, C. (2014). Chemical Probing of RNA in Living Cells. In: Waldsich, C. (eds) RNA Folding. Methods in Molecular Biology, vol 1086. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-667-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-667-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-666-5

  • Online ISBN: 978-1-62703-667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics