Skip to main content
Book cover

RNA Folding pp 95–117Cite as

Massively Parallel RNA Chemical Mapping with a Reduced Bias MAP-Seq Protocol

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1086))

Abstract

Chemical mapping methods probe RNA structure by revealing and leveraging correlations of a nucleotide’s structural accessibility or flexibility with its reactivity to various chemical probes. Pioneering work by Lucks and colleagues has expanded this method to probe hundreds of molecules at once on an Illumina sequencing platform, obviating the use of slab gels or capillary electrophoresis on one molecule at a time. Here, we describe optimizations to this method from our lab, resulting in the MAP-seq protocol (Multiplexed Accessibility Probing read out through sequencing), version 1.0. The protocol permits the quantitative probing of thousands of RNAs at once, by several chemical modification reagents, on the time scale of a day using a tabletop Illumina machine. This method and a software package MAPseeker (http://simtk.org/home/map_seeker) address several potential sources of bias, by eliminating PCR steps, improving ligation efficiencies of ssDNA adapters, and avoiding problematic heuristics in prior algorithms. We hope that the step-by-step description of MAP-seq 1.0 will help other RNA mapping laboratories to transition from electrophoretic to next-generation sequencing methods and to further reduce the turnaround time and any remaining biases of the protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ban N, Nissen P, Hansen J et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920

    Article  PubMed  CAS  Google Scholar 

  2. Guerrier-Takada C, Gardiner K, Marsh T et al (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  PubMed  CAS  Google Scholar 

  3. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    Article  PubMed  CAS  Google Scholar 

  4. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  5. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  PubMed  CAS  Google Scholar 

  6. Gutell RR, Lee JC, Cannone JJ (2002) The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 12:301–310

    Article  PubMed  CAS  Google Scholar 

  7. Pace NR, Thomas BC, Woese CR (1999) Probing RNA structure, function, and history by comparative analysis. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA World, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 113–141

    Google Scholar 

  8. Sripakdeevong P, Kladwang W, Das R (2011) An enumerative stepwise ansatz enables atomic-accuracy RNA loop modeling. Proc Natl Acad Sci USA 108:20573–20578

    Article  PubMed  CAS  Google Scholar 

  9. Wang Z, Parisien M, Scheets K et al (2011) The cap-binding translation initiation factor, eIF4E, binds a pseudoknot in a viral cap-independent translation element. Structure 19:868–880

    Article  PubMed  CAS  Google Scholar 

  10. Flores SC, Altman RB (2010) Turning limited experimental information into 3D models of RNA. RNA 16:1769–1778

    Article  PubMed  CAS  Google Scholar 

  11. Kladwang W, Cordero P, Das R (2011) A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA. RNA 17:522–534

    Article  PubMed  CAS  Google Scholar 

  12. Cordero P, Kladwang W, VanLang CC et al (2012) Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry 51:7037–7039

    Article  PubMed  CAS  Google Scholar 

  13. Bida JP, Das R (2012) Squaring theory with practice in RNA design. Curr Opin Struct Biol 22:457–466

    Article  PubMed  CAS  Google Scholar 

  14. Mortimer SA, Johnson JS, Weeks KM (2009) Quantitative analysis of RNA solvent accessibility by N-silylation of guanosine. Biochemistry 48:2109–2114

    Article  PubMed  CAS  Google Scholar 

  15. Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67

    Article  PubMed  CAS  Google Scholar 

  16. Miura K, Tsuda S, Ueda T et al (1983) Chemical modification of guanine residues of mouse 5 S ribosomal RNA with kethoxal. (Nucleosides and nucleotides 46). Biochim Biophys Acta 739:281–285

    Article  PubMed  CAS  Google Scholar 

  17. Inoue T, Cech TR (1985) Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci USA 82:648–652

    Article  PubMed  CAS  Google Scholar 

  18. Ehresmann C, Baudin F, Mougel M et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  PubMed  CAS  Google Scholar 

  19. Fritz JJ, Lewin A, Hauswirth W et al (2002) Development of hammerhead ribozymes to modulate endogenous gene expression for functional studies. Methods 28:276–285

    Article  PubMed  CAS  Google Scholar 

  20. Rocca-Serra P, Bellaousov S, Birmingham A et al (2011) Sharing and archiving nucleic acid structure mapping data. RNA 17:1204–1212

    Article  PubMed  CAS  Google Scholar 

  21. Merino EJ, Wilkinson KA, Coughlan JL et al (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231

    Article  PubMed  CAS  Google Scholar 

  22. Mortimer SA, Weeks KM (2007) A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129:4144–4145

    Article  PubMed  CAS  Google Scholar 

  23. Kertesz M, Wan Y, Mazor E et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107

    Article  PubMed  CAS  Google Scholar 

  24. Underwood JG, Uzilov AV, Katzman S et al (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7:995–1001

    Article  PubMed  CAS  Google Scholar 

  25. Zheng Q, Ryvkin P, Li F et al (2010) Genome-wide double-stranded RNA sequencing reveals the functional significance of base-paired RNAs in Arabidopsis. PLoS Genet 6

    Google Scholar 

  26. Lucks JB, Mortimer SA, Trapnell C et al (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci USA 108:11063–11068

    Article  PubMed  CAS  Google Scholar 

  27. Aviran S, Trapnell C, Lucks JB et al (2011) Modeling and automation of sequencing-based characterization of RNA structure. Proc Natl Acad Sci USA 108:11069–11074

    Article  PubMed  CAS  Google Scholar 

  28. Ziehler WA, Engelke DR (2001) Probing RNA structure with chemical reagents and enzymes. Curr Protoc Nucleic Acid Chem Chapter 6, Unit 6 1

    Google Scholar 

  29. Blondal T, Thorisdottir A, Unnsteinsdottir U et al (2005) Isolation and characterization of a thermostable RNA ligase 1 from a Thermus scotoductus bacteriophage TS2126 with good single-stranded DNA ligation properties. Nucleic Acids Res 33:135–142

    Article  PubMed  CAS  Google Scholar 

  30. Li TW, Weeks KM (2006) Structure-independent and quantitative ligation of single-stranded DNA. Anal Biochem 349: 242–246

    Article  PubMed  CAS  Google Scholar 

  31. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  Google Scholar 

  32. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  PubMed  CAS  Google Scholar 

  33. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  CAS  Google Scholar 

  34. Torchia C, Takagi Y, Ho CK (2008) Archaeal RNA ligase is a homodimeric protein that catalyzes intramolecular ligation of single-stranded RNA and DNA. Nucleic Acids Res 36: 6218–6227

    Article  PubMed  CAS  Google Scholar 

  35. Zhelkovsky AM, McReynolds LA (2012) Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase—engineering a thermostable ATP independent enzyme. BMC Mol Biol 13:24

    Article  PubMed  CAS  Google Scholar 

  36. Yoon S, Kim J, Hum J et al (2011) HiTRACE: high-throughput robust analysis for capillary electrophoresis. Bioinformatics 27:1798–1805

    Article  PubMed  CAS  Google Scholar 

  37. Kladwang W, VanLang CC, Cordero P et al (2011) Understanding the errors of SHAPE-directed RNA structure modeling. Bio-chemistry 50:8049–8056

    CAS  Google Scholar 

  38. Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Das laboratory for discussions and tests of the protocol. We thank Tom Mann and Frank Cochran for preparing the 1M7 acylating reagent, and S. Mortimer for an updated 1M7 synthesis protocol. Writing was supported by the NIH (IRACDA fellowship to MS; R01GM100953 to RD) and the Burroughs-Wellcome Foundation (Career Award to RD).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Seetin, M.G., Kladwang, W., Bida, J.P., Das, R. (2014). Massively Parallel RNA Chemical Mapping with a Reduced Bias MAP-Seq Protocol. In: Waldsich, C. (eds) RNA Folding. Methods in Molecular Biology, vol 1086. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-667-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-667-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-666-5

  • Online ISBN: 978-1-62703-667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics