Skip to main content

Mapping RNA Structure In Vitro Using Nucleobase-Specific Probes

  • Protocol
  • First Online:
Book cover RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1086))

Abstract

RNAs have to adopt specific three-dimensional structures to fulfill their biological functions. Therefore exploring RNA structure is of interest to understand RNA-dependent processes. Chemical probing in vitro is a very powerful tool to investigate RNA molecules under a variety of conditions. Among the most frequently used chemical reagents are the nucleobase-specific probes dimethyl sulfate (DMS), 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate (CMCT) and β-ethoxy-α-ketobutyraldehyde (kethoxal). These chemical reagents modify nucleotides which are not involved in hydrogen bonding or protected by a ligand, such as proteins or metabolites. Upon performing modification reactions with all three chemicals the accessibility of all four nucleobases can be determined. With this fast and inexpensive method local changes in RNA secondary and tertiary structure, as well as the formation of contacts between RNA and its ligands can be detected independent of the RNA’s length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brion P, Westhof E (1997) Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct 26:113–137

    Article  PubMed  CAS  Google Scholar 

  2. Pyle AM, Fedorova O, Waldsich C (2007) Folding of group II introns: a model system for large, multidomain RNAs? Trends Biochem Sci 32:138–145

    Article  PubMed  CAS  Google Scholar 

  3. Schroeder R, Barta A, Semrad K (2004) Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 5:908–919

    Article  PubMed  CAS  Google Scholar 

  4. Sosnick TR, Pan T (2003) RNA folding: models and perspectives. Curr Opin Struct Biol 13:309–316

    Article  PubMed  CAS  Google Scholar 

  5. Treiber DK, Williamson JR (1999) Exposing the kinetic traps in RNA folding. Curr Opin Struct Biol 9:339–345

    Article  PubMed  CAS  Google Scholar 

  6. Treiber DK, Williamson JR (2001) Beyond kinetic traps in RNA folding. Curr Opin Struct Biol 11:309–314

    Article  PubMed  CAS  Google Scholar 

  7. Woodson SA (2000) Compact but disordered states of RNA. Nat Struct Biol 7:349–352

    Article  PubMed  CAS  Google Scholar 

  8. Woodson SA (2005) Structure and assembly of group I introns. Curr Opin Struct Biol 15:324–330

    Article  PubMed  CAS  Google Scholar 

  9. Woodson SA (2010) Compact intermediates in RNA folding. Annu Rev Biophys 39:61–77

    Article  PubMed  CAS  Google Scholar 

  10. Brunel C, Romby P (2000) Probing RNA structure and RNA-ligand complexes with chemical probes. Methods Enzymol 318:3–21

    Article  PubMed  CAS  Google Scholar 

  11. Shcherbakova I, Mitra S, Beer RH et al (2006) Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 34:e48

    Article  PubMed  Google Scholar 

  12. Waldsich C (2008) Dissecting RNA folding by nucleotide analog interference mapping (NAIM). Nat Protoc 3:811–823

    Article  PubMed  CAS  Google Scholar 

  13. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616

    Article  PubMed  CAS  Google Scholar 

  14. Ehresmann C, Baudin F, Mougel M et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  PubMed  CAS  Google Scholar 

  15. Moazed D, Stern S, Noller HF (1986) Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol 187:399–416

    Article  PubMed  CAS  Google Scholar 

  16. Brunel C, Romby P, Westhof E et al (1991) Three-dimensional model of Escherichia coli ribosomal 5S RNA as deduced from structure probing in solution and computer modeling. J Mol Biol 221:293–308

    Article  PubMed  CAS  Google Scholar 

  17. Moazed D, Noller HF (1986) Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47:985–994

    Article  PubMed  CAS  Google Scholar 

  18. Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–394

    Article  PubMed  CAS  Google Scholar 

  19. Moazed D, Noller HF (1989) Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57:585–597

    Article  PubMed  CAS  Google Scholar 

  20. Moazed D, Robertson JM, Noller HF (1988) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334:362–364

    Article  PubMed  CAS  Google Scholar 

  21. Moazed D, Samaha RR, Gualerzi C et al (1995) Specific protection of 16 S rRNA by translational initiation factors. J Mol Biol 248:207–210

    PubMed  CAS  Google Scholar 

  22. Konforti BB, Liu Q, Pyle AM (1998) A map of the binding site for catalytic domain 5 in the core of a group II intron ribozyme. EMBO J 17:7105–7117

    Article  PubMed  CAS  Google Scholar 

  23. Waldsich C, Masquida B, Westhof E et al (2002) Monitoring intermediate folding states of the td group I intron in vivo. EMBO J 21:5281–5291

    Article  PubMed  CAS  Google Scholar 

  24. Das R, Laederach A, Pearlman SM et al (2005) SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11:344–354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Foundation FWF [grants Y401 and P23497 to C.W.]. We want to thank Katharina Auer for providing the data shown in Fig. 3.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sachsenmaier, N., Handl, S., Debeljak, F., Waldsich, C. (2014). Mapping RNA Structure In Vitro Using Nucleobase-Specific Probes. In: Waldsich, C. (eds) RNA Folding. Methods in Molecular Biology, vol 1086. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-667-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-667-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-666-5

  • Online ISBN: 978-1-62703-667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics