Skip to main content

Treatment of Infections Due to Resistant Staphylococcus aureus

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1085))

Abstract

This chapter reviews data on the treatment of infections caused by drug-resistant Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA). This review covers findings reported in the English language medical literature up to January of 2013. Despite the emergence of resistant and multidrug-resistant S. aureus, we have seven effective drugs in clinical use for which little resistance has been observed: vancomycin, quinupristin–dalfopristin, linezolid, tigecycline, telavancin, ceftaroline, and daptomycin. However, vancomycin is less effective for infections with MRSA isolates that have a higher MIC within the susceptible range. Linezolid is probably the drug of choice for the treatment of complicated MRSA skin and soft tissue infections (SSTIs); whether it is drug of choice in pneumonia remains debatable. Daptomycin has shown to be non-inferior to either vancomycin or β-lactams in the treatment of staphylococcal SSTIs, bacteremia, and right-sided endocarditis. Tigecycline was also non-inferior to comparator drugs in the treatment of SSTIs, but there is controversy about whether it is less effective than other therapeutic options in the treatment of more serious infections. Telavancin has been shown to be non-inferior to vancomycin in the treatment of SSTIs and pneumonia, but has greater nephrotoxicity. Ceftaroline is a broad-spectrum cephalosporin with activity against MRSA; it is non-inferior to vancomycin in the treatment of SSTIs. Clindamycin, trimethoprim–sulfamethoxazole, doxycycline, rifampin, moxifloxacin, and minocycline are oral anti-staphylococcal agents that may have utility in the treatment of SSTIs and osteomyelitis, but the clinical data for their efficacy is limited. There are also several drugs with broad-spectrum activity against Gm-positive organisms that have reached the phase II and III stages of clinical testing that will hopefully be approved for clinical use in the upcoming years: oritavancin, dalbavancin, omadacycline, tedizolid, delafloxacin, and JNJ-Q2. Thus, there are currently many effective drugs to treat resistant S. aureus infections and many promising agents in the pipeline. Nevertheless, S. aureus remains a formidable adversary, and despite our deep bullpen of potential therapies, there are still frequent treatment failures and unfortunate clinical outcomes. The following discussion summarizes the clinical challenges presented by MRSA, the clinical experience with our current anti-MRSA antibiotics, and the gaps in our knowledge on how to use these agents to most effectively combat MRSA infections.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liu C, Bayer A, Cosgrove SE et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–e55

    Article  PubMed  Google Scholar 

  2. Lindsay JA, Holden MTG (2004) Staphylococcus aureus: superbug, super genome? Trends Microbiol 12:378–385

    Article  PubMed  CAS  Google Scholar 

  3. Naimi TS, LeDell KH, Como-Sabetti K et al (2003) Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976–2984

    Article  PubMed  CAS  Google Scholar 

  4. Rybak MJ, LaPlante KL (2005) Community-associated methicillin-resistant Staphylococcus aureus: a review. Pharmacotherapy 25:74–85

    Article  PubMed  CAS  Google Scholar 

  5. Skov RL, Jensen KS (2009) Community-associated methicillin-resistant Staphylococcus aureus as a cause of hospital-acquired infections. J Hosp Infect 73:364–370

    Article  PubMed  CAS  Google Scholar 

  6. de Kraker ME, Wolkewitz M, Davey PG et al (2011) Clinical impact of antimicrobial resistance in European hospitals: excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother 55:1598–1605

    Article  PubMed  CAS  Google Scholar 

  7. Klevens RM, Morrison MA, Nadle J (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771

    Article  PubMed  CAS  Google Scholar 

  8. Gould IM, David MZ, Esposito S et al (2012) New insights into methicillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrob Agents 39:96–104

    Article  PubMed  CAS  Google Scholar 

  9. Kallen AJ, Mu Y, Bulens S et al (2010) Health care-associated invasive MRSA infections, 2005–2008. JAMA 304:641–648

    Article  PubMed  CAS  Google Scholar 

  10. Landrum ML, Neumann C, Cook C et al (2012) Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system, 2005–2010. JAMA 308:50–59

    Article  PubMed  CAS  Google Scholar 

  11. Calfee DP, Salgado CD, Classen D et al (2008) Strategies to prevent transmission of methicillin-resistant Staphylococcus aureus in acute care hospitals. Infect Control Hosp Epidemiol 29(Suppl 1):S62–S80

    Article  PubMed  Google Scholar 

  12. Tenover FC, Moellering RC Jr (2007) The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis 44:1208–1215

    Article  PubMed  CAS  Google Scholar 

  13. Gould IM (2010) VRSA-doomsday superbug or damp squib? Lancet Infect Dis 10:816–818

    Article  PubMed  Google Scholar 

  14. Saravolatz LD, Pawlak J, Johnson LB (2012) In vitro susceptibilities and molecular analysis of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus isolates. Clin Infect Dis 55:582–586

    Article  PubMed  CAS  Google Scholar 

  15. Siberry GK, Tekle T, Carroll K, Dick J (2003) Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis 37:1257–1260

    Article  PubMed  Google Scholar 

  16. Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH (2003) Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol 41:4740–4744

    Article  PubMed  CAS  Google Scholar 

  17. Como-Sabetti K, Harriman KH, Buck JM et al (2009) Community-associated methicillin-resistant Staphylococcus aureus: trends in case and isolate characteristics from six years of prospective surveillance. Public Health Rep 124:427–435

    PubMed  Google Scholar 

  18. Levine DP (2006) Vancomycin: a history. Clin Infect Dis 42:S5–S12

    Article  PubMed  CAS  Google Scholar 

  19. Kollef MH, Micek ST (2005) Staphylococcus aureus pneumonia. A “superbug” infection in community and hospital settings. Chest 128:1093–1096

    Article  PubMed  Google Scholar 

  20. Stevens DL (2006) The role of vancomycin in the treatment paradigm. Clin Infect Dis 42:S51–S57

    Article  PubMed  CAS  Google Scholar 

  21. Stryjewski ME, Szczech LA, Benjamin DK Jr et al (2007) Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis 44:190–196

    Article  PubMed  CAS  Google Scholar 

  22. Rello J, Torres A, Ricart M et al (1994) Ventilator-associated pneumonia by Staphylococcus aureus. Comparison of methicillin-sensitive and methicillin-resistant episodes. Am J Respir Crit Care Med 150:1545–1549

    Article  PubMed  CAS  Google Scholar 

  23. Tice AD, Hoagland P, Shoultz DA (2003) Outcomes of osteomyelitis among patients treated with outpatient parenteral antimicrobial therapy. Am J Med 114:723–728

    Article  PubMed  CAS  Google Scholar 

  24. Chambers HF (1997) Parenteral antibiotics for the treatment of bacteremia and other serious staphylococcal infections. In: Crossley KB, Archer GL (eds) The staphylococci in human disease. Churchill-Livingstone, New York, pp 583–601

    Google Scholar 

  25. Hawser SP, Bouchillon SK, Hoban DJ, Dowzicky M, Babinchak T (2011) Rising incidence of Staphylococcus aureus with reduced susceptibility to vancomycin and susceptibility to antibiotics: a global analysis 2004–2009. Int J Antimicrob Agents 37:219–224

    Article  PubMed  CAS  Google Scholar 

  26. Sader HS, Fey PD, Limaye AP et al (2009) Evaluation of vancomycin and daptomycin potency trends (MIC creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine U.S. medical centers from 2002 to 2006. Antimicrob Agents Chemother 53:4127–4132

    Article  PubMed  CAS  Google Scholar 

  27. van Hal SJ, Lodise TP, Paterson DL (2012) The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis 54:755–771

    Article  PubMed  CAS  Google Scholar 

  28. Brink A (2012) Does resistance in severe infections caused by methicillin-resistant Staphylococcus aureus give you the ‘creeps’? Curr Opin Crit Care 18:451–459

    Article  PubMed  Google Scholar 

  29. Rybak M, Lomaestro B, Rotschafer JC et al (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66:82–98

    Article  PubMed  CAS  Google Scholar 

  30. Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N (2012) Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother 67:17–24

    Article  PubMed  CAS  Google Scholar 

  31. Vandecasteele SJ, De Vriese AS, Tacconelli E (2013) The pharmacokinetics and pharmacodynamics of vancomycin in clinical practice: evidence and uncertainties. J Antimicrob Chemother 68(4):743–748

    Article  PubMed  CAS  Google Scholar 

  32. Wysocki M, Delatour F, Faurisson F et al (2001) Continuous versus intermittent infusion of vancomycin in severe staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 45:2460–2467

    Article  PubMed  CAS  Google Scholar 

  33. Jeffres MN, Isakow W, Doherty JA et al (2006) Predictors of mortality for methicillin-resistant Staphylococcus aureus health-care-associated pneumonia: specific evaluation of vancomycin pharmacokinetic indices. Chest 130:947–955

    Article  PubMed  Google Scholar 

  34. Itani KM, Dryden MS, Bhattacharyya H et al (2010) Efficacy and safety of linezolid versus vancomycin for the treatment of complicated skin and soft-tissue infections proven to be caused by methicillin-resistant Staphylococcus aureus. Am J Surg 199:804–816

    Article  PubMed  CAS  Google Scholar 

  35. Patel N, Pai MP, Rodvold KA et al (2011) Vancomycin: we can’t get there from here. Clin Infect Dis 52:969–974

    Article  PubMed  CAS  Google Scholar 

  36. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A (2006) High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med 166:2138–2144

    Article  PubMed  Google Scholar 

  37. Watkins RR, Lemonovich TL, File TM Jr (2012) An evidence-based review of linezolid for the treatment of methicillin-resistant Staphylococcus aureus (MRSA): place in therapy. Core Evid 7:131–143

    Article  PubMed  CAS  Google Scholar 

  38. Wunderink RG, Bello J, Cammarata SK, Croos-Dadrera RV, Kollef MH (2003) Linezolid vs vancomycin. Analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 124:1789–1797

    PubMed  CAS  Google Scholar 

  39. Kollef MH, Rello J, Cammarata SK, Croos-Dabrera RV, Wunderink RG (2004) Clinical cure and survival in Gram-positive ventilator-associated pneumonia: retrospective analysis of two double-blind studies comparing linezolid with vancomycin. Intensive Care Med 30:388–394

    Article  PubMed  Google Scholar 

  40. Ioanas M, Lode H (2004) Linezolid in VAP by MRSA: better choice? Intensive Care Med 30:343–346

    Article  PubMed  Google Scholar 

  41. Honeybourne D, Tobin C, Jevons G, Andrews J, Wise R (2003) Intrapulmonary penetration of linezolid. J Antimicrob Chemother 51:1431–1434

    Article  PubMed  CAS  Google Scholar 

  42. Alaniz C, Pogue JM (2012) Vancomycin versus linezolid in the treatment of methicillin-resistant Staphylococcus aureus nosocomial pneumonia: implications of the ZEPHyR trial. Ann Pharmacother 46:1432–1435

    Article  PubMed  Google Scholar 

  43. Wunderink RG, Niederman MS, Kollef MH et al (2012) Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized controlled trial. Clin Infect Dis 54:621–629

    Article  PubMed  CAS  Google Scholar 

  44. Micek ST, Dunne M, Kollef MH (2005) Pleuropulmonary complications of Panton-Valentine leukocidin-positive community-acquired methicillin-resistant Staphylococcus aureus: importance of treatment with antimicrobials inhibiting exotoxin production. Chest 128:2732–2738

    Article  PubMed  CAS  Google Scholar 

  45. Shukla SK (2005) Community-associated methicillin-resistant Staphylococcus aureus and its emerging virulence. Clin Med Res 3:57–60

    Article  PubMed  Google Scholar 

  46. Bernardo K, Pakulat N, Fleer S et al (2004) Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob Agents Chemother 48:544–546

    Google Scholar 

  47. Lewis JS II, Jorgensen JH (2005) Inducible clindamycin resistance in staphylococci: should clinicians and microbiologists be concerned? Clin Infect Dis 40:280–285

    Article  PubMed  Google Scholar 

  48. Weigelt J, Kaafarani HMA, Itani KMF, Swanson RN (2004) Linezolid eradicates MRSA better than vancomycin from surgical-site infections. Am J Surg 188:760–766

    Article  PubMed  CAS  Google Scholar 

  49. Weigelt J, Itani K, Stevens D et al (2005) Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 49:2260–2266

    Article  PubMed  CAS  Google Scholar 

  50. Sharpe JN, Shively MD, Polk HC Jr (2005) Clinical and economic outcomes of oral linezolid versus intravenous vancomycin in the treatment of MRSA-complicated, lower-extremity skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. Am J Surg 189:425–428

    Article  PubMed  Google Scholar 

  51. Duane TM, Weigelt JA, Puzniak LA, Huang DB (2012) Linezolid and vancomycin in treatment of lower-extremity complicated skin and skin structure infections caused by methicillin-resistant Staphylococcus aureus in patients with and without vascular disease. Surg Infect (Larchmt) 13:147–153

    Article  Google Scholar 

  52. Lipsky BA, Itani K, Norden C (2004) Linezolid Diabetic Foot Infection Study Group. Treating foot infections in diabetic patients: a randomized, multicenter, open-label trial of linezolid versus ampicillin-sulbactam/amoxicillin-clavulanate. Clin Infect Dis 38:17–24

    Article  PubMed  CAS  Google Scholar 

  53. Rayner CR, Baddour LM, Birmingham MC et al (2004) Linezolid in the treatment of osteomyelitis: results of a compassionate use experience. Infection 32:8–14

    Article  PubMed  CAS  Google Scholar 

  54. Falagas ME, Siempos II, Papagelopoulos PJ, Vardakas KZ (2007) Linezolid for the treatment of adults with bone and joint infections. Int J Antimicrob Agents 29:233–239

    Article  PubMed  CAS  Google Scholar 

  55. Kutscha-Lissberg F, Hebler U, Muhr G, Koller M (2003) Linezolid penetration into bone and joint tissues infected with methicillin-resistant staphylococci. Antimicrob Agents Chemother 47:3964–3966

    Article  PubMed  CAS  Google Scholar 

  56. Shorr AF, Kunkek MJ, Kollef M (2005) Linezolid versus vancomycin for Staphylococcus aureus bacteraemia; pooled analysis of randomized studies. J Antimicrob Chemother 56:923–929

    Article  PubMed  CAS  Google Scholar 

  57. Park HJ, Kim SH, Kim MJ et al (2012) Efficacy of linezolid-based salvage therapy compared with glycopeptide-based therapy in patients with persistent methicillin-resistant Staphylococcus aureus bacteremia. J Infect 65:505–512

    Article  PubMed  Google Scholar 

  58. Wilcox MH, Tack KJ, Bouza E et al (2009) Complicated skin and skin-structure infections and catheter-related bloodstream infections: noninferiority of linezolid in a phase 3 study. Clin Infect Dis 48:203–212

    Article  PubMed  CAS  Google Scholar 

  59. Lauridsen TK, Bruun LE, Rasmussen RV et al (2012) Linezolid as rescue treatment for left-sided infective endocarditis: an observational, retrospective, multicenter study. Eur J Clin Microbiol Infect Dis 31:2567–2574

    Article  PubMed  CAS  Google Scholar 

  60. Tascini C, Bongiorni MG, Doria R et al (2011) Linezolid for endocarditis: a case series of 14 patients. J Antimicrob Chemother 66:679–682

    Article  PubMed  CAS  Google Scholar 

  61. Kessler AT, Kourtis AP (2007) Treatment of meningitis caused by methicillin-resistant Staphylococcus aureus with linezolid. Infection 35:271–274

    Article  PubMed  CAS  Google Scholar 

  62. Naesens R, Ronsyn M, Druwé P et al (2009) Central nervous system invasion by community-acquired meticillin-resistant Staphylococcus aureus. J Med Microbiol 58:1247–1251

    Article  PubMed  Google Scholar 

  63. Sipahi OR, Bardak S, Turhan T et al (2011) Linezolid in the treatment of methicillin-resistant staphylococcal post-neurosurgical meningitis: a series of 17 cases. Scand J Infect Dis 43:757–764

    Article  PubMed  Google Scholar 

  64. Howden BP, Charles PGP, Johnson PDR, Ward PB, Grayson ML (2005) Improved outcomes with linezolid for methicillin-resistant Staphylococcus aureus infections; better drug or reduced vancomycin susceptibility? Antimicrob Agents Chemother 49:4816–4817

    Article  PubMed  Google Scholar 

  65. Soriano A, Marco F, Martinez JA et al (2008) Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 46:193–200

    Article  PubMed  CAS  Google Scholar 

  66. Lodise TP, Graves J, Evans A et al (2008) Relationship between vancomycin MIC and failure among patients with methicillin resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 52:3315–3320

    Article  PubMed  CAS  Google Scholar 

  67. Choi EY, Huh JW, Lim C et al (2011) Relationship between the MIC of vancomycin and clinical outcome in patients with MRSA nosocomial pneumonia. Intensive Care Med 37:639–647

    Article  PubMed  Google Scholar 

  68. Haque NZ, Zuniga LC, Peyrani P et al (2010) Relationship of vancomycin minimum inhibitory concentration to mortality in patients with methicillin-resistant Staphylococcus aureus hospital-acquired, ventilator-associated, or health-care associated pneumonia. Chest 138:1356–1362

    Article  PubMed  CAS  Google Scholar 

  69. Sancak B, Ercis S, Menemenlioglu D, Çolakoglu S, Hasçelik G (2005) Methicillin-resistant Staphylococcus aureus heterogeneously resistant to vancomycin in a Turkish university hospital. J Antimicrob Chemother 56:519–523

    Article  PubMed  CAS  Google Scholar 

  70. Krause KM, Blais J, Lewis SR et al (2012) In vitro activity of telavancin and occurrence of vancomycin heteroresistance in isolates from patients enrolled in phase 3 clinical trials of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 74:429–431

    Article  PubMed  CAS  Google Scholar 

  71. Deresinski S (2007) Counterpoint: vancomycin and Staphylococcus aureus—an antibiotic enters obsolescence. Clin Infect Dis 44:1543–1548

    Article  PubMed  CAS  Google Scholar 

  72. Charles PG, Ward PB, Johnson PD, Howden BP, Grayson ML (2004) Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis 38:448–451

    Article  PubMed  Google Scholar 

  73. Khatib R, Jose J, Musta A et al (2011) Relevance of vancomycin-intermediate susceptibility and heteroresistance in methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother 66:1594–1599

    Article  PubMed  CAS  Google Scholar 

  74. Satola SW, Lessa FC, Ray SM et al (2011) Clinical and laboratory characteristics of invasive infections due to methicillin-resistant Staphylococcus aureus isolates demonstrating a vancomycin MIC of 2 micrograms per milliliter: lack of effect of heteroresistant vancomycin-intermediate S. aureus phenotype. J Clin Microbiol 49:1583–1587

    Article  PubMed  CAS  Google Scholar 

  75. van Hal SJ, Jones M, Gosbell IB, Paterson DL (2011) Vancomycin heteroresistance is associated with reduced mortality in ST239 methicillin-resistant Staphylococcus aureus blood stream infections. PLoS One 6:e21217

    Article  PubMed  CAS  Google Scholar 

  76. Nasraway SA, Shorr AF, Kuter DJ et al (2003) Linezolid does not increase the risk of thrombocytopenia in patients with nosocomial pneumonia: comparative analysis of linezolid and vancomycin use. Clin Infect Dis 37:1609–1616

    Article  PubMed  CAS  Google Scholar 

  77. Rao N, Ziran BH, Wagener MM, Santa ER, Yu VL (2004) Similar hematologic effects of long-term linezolid and vancomycin therapy in a prospective observational study of patients with orthopedic devices. Clin Infect Dis 38:1058–1064

    Article  PubMed  CAS  Google Scholar 

  78. Radunz S, Juntermanns B, Kaiser GM et al (2011) Efficacy and safety of linezolid in liver transplant patients. Transpl Infect Dis 13:353–358

    Article  PubMed  CAS  Google Scholar 

  79. Jaksic B, Martinelli G, Perez-Oteyza J et al (2006) Efficacy and safety of linezolid compared with vancomycin in a randomized, double-blind study of febrile neutropenic patients with cancer. Clin Infect Dis 42:597–607

    Article  PubMed  CAS  Google Scholar 

  80. Bergeron L, Boulé M, Perreault S (2005) Serotonin toxicity associated with concomitant use of linezolid. Ann Pharmacother 39:956–961

    Article  PubMed  Google Scholar 

  81. Butterfield JM, Lawrence KR, Reisman A et al (2012) Comparison of serotonin toxicity with concomitant use of either linezolid or comparators and serotonergic agents: an analysis of phase III and IV randomized clinical trial data. J Antimicrob Chemother 67:494–502

    Article  PubMed  CAS  Google Scholar 

  82. Anonymous (2004) Pfizer: Zyvox (linezolid). Safety-nervous-psychiatric. Reports of peripheral or optic neuropathy. Data on file

    Google Scholar 

  83. Birmingham MC, Rayner CR, Meagher AK et al (2003) Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis 36:159–168

    Article  PubMed  CAS  Google Scholar 

  84. Frippiat F, Bergiers C, Michel C, Dujardin JP, Derue G (2004) Severe bilateral optic neuritis associated with prolonged linezolid therapy. J Antimicrob Chemother 53:114–115

    Google Scholar 

  85. Ferry T, Ponceau B, Simon M et al (2005) Possibly linezolid-induced peripheral and central nervous system neurotoxicity: report of four cases. Infection 33:151–154

    Article  PubMed  CAS  Google Scholar 

  86. US Food and Drug Administration (2013) Highlights of prescribing information-Zyvox. www.accessdata.fda.gov/drugsatfdadocs/-label/2008/021130s016,021131s013,021132s014lbl.pdf. Accessed 25 Jan 2013

  87. Lomaestro BM (2003) Resistance to linezolid. Are we surprised? How hard should we look? Ann Pharmacother 37:909–911

    Article  PubMed  CAS  Google Scholar 

  88. Mendes RE, Sader HS, Farrell DJ, Jones RN (2012) Telavancin activity tested against a contemporary collection of Gram-positive pathogens from USA hospitals (2007–2009). Diagn Microbiol Infect Dis 72:113–117

    Article  PubMed  CAS  Google Scholar 

  89. Morales G, Picazo JJ, Baos E et al (2010) Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50:821–825

    Article  PubMed  CAS  Google Scholar 

  90. Pea F, Furlanut M, Cojutti P et al (2010) Therapeutic drug monitoring of linezolid: a retrospective, monocentric analysis. Antimicrob Agents Chemother 54:4605–4610

    Article  PubMed  CAS  Google Scholar 

  91. Fenton C, Keating GM, Curran MP (2004) Daptomycin. Drugs 64:445–455

    Article  PubMed  CAS  Google Scholar 

  92. Arbeit RD, Maki D, Tally FP et al (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    Article  PubMed  CAS  Google Scholar 

  93. Fowler VG Jr, Boucher HW, Corey GR et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–665

    Article  PubMed  CAS  Google Scholar 

  94. Moore CL, Osaki-Kiyan P, Haque NZ et al (2012) Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case-control study. Clin Infect Dis 54:51–58

    Article  PubMed  CAS  Google Scholar 

  95. Jobson S, Moise PA, Eskandarian R (2011) Retrospective observational study comparing vancomycin versus daptomycin as initial therapy for Staphylococcus aureus infections. Clin Ther 33:1391–1399

    Article  PubMed  CAS  Google Scholar 

  96. Moenster RP, Linneman TW, Finnegan PM, McDonald JR (2012) Daptomycin compared to vancomycin for the treatment of osteomyelitis: a single-center, retrospective cohort study. Clin Ther 34:1521–1527

    Article  PubMed  CAS  Google Scholar 

  97. Gallagher JC, Huntington JA, Culshaw D et al (2012) Daptomycin therapy for osteomyelitis: a retrospective study. BMC Infect Dis 12:133

    Article  PubMed  CAS  Google Scholar 

  98. Parra-Ruiz J, Vidaillac C, Rose WE et al (2010) Activities of high-dose daptomycin, vancomycin, and moxifloxacin alone or in combination with clarithromycin or rifampin in a novel in vitro model of Staphylococcus aureus biofilm. Antimicrob Agents Chemother 54:4329–4334

    Article  PubMed  CAS  Google Scholar 

  99. Echevarria K, Datta P, Cadena J, Lewis JS II (2005) Severe myopathy and possible hepatotoxicity related to daptomycin. J Antimicrob Chemother 55:599–600

    Article  PubMed  CAS  Google Scholar 

  100. Golightly LK, Barber GR, Barron MA, Page RL II (2013) Statins and daptomycin: safety assessment of concurrent use and evaluation of drug interaction liability. Drug Metabol Drug Interact 9:1–10

    Google Scholar 

  101. White B, Seaton RA (2011) Complicated skin and soft tissue infections: literature review of evidence for and experience with daptomycin. Infect Drug Resist 4:115–127

    PubMed  CAS  Google Scholar 

  102. Durante-Mangoni E, Casillo R, Bernardo M et al (2012) High-dose daptomycin for cardiac implantable electronic device-related infective endocarditis. Clin Infect Dis 54:347–354

    Article  PubMed  CAS  Google Scholar 

  103. Kullar R, Davis SL, Levine DP et al (2011) High-dose daptomycin for treatment of complicated gram-positive infections: a large, multicenter, retrospective study. Pharmacotherapy 31:527–536

    Article  PubMed  CAS  Google Scholar 

  104. Sakoulas G, Eliopoulos GM, Alder J, Eliopoulos CT (2003) Efficacy of daptomycin in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:1714–1718

    Article  PubMed  CAS  Google Scholar 

  105. Tsuji BT, Rybak MJ (2005) Short-course gentamicin in combination with daptomycin or vancomycin against Staphylococcus aureus in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother 49:2735–2745

    Article  PubMed  CAS  Google Scholar 

  106. Steed ME, Werth BJ, Ireland CE, Rybak MJ (2012) Evaluation of the novel combination of high-dose daptomycin plus trimethoprim-sulfamethoxazole against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus using an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother 56:5709–5714

    Article  PubMed  CAS  Google Scholar 

  107. Mehta S, Singh C, Plata KB et al (2012) β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob Agents Chemother 56:6192–6200

    Article  PubMed  CAS  Google Scholar 

  108. Rose WE, Schulz LT, Andes D et al (2012) Addition of ceftaroline to daptomycin after emergence of daptomycin-nonsusceptible Staphylococcus aureus during therapy improves antibacterial activity. Antimicrob Agents Chemother 56:5296–5302

    Article  PubMed  CAS  Google Scholar 

  109. Dhand A, Bayer AS, Pogliano J et al (2011) Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis 53:158–163

    Article  PubMed  CAS  Google Scholar 

  110. Steenbergen JN, Mohr JF, Thorne GM (2009) Effects of daptomycin in combination with other antimicrobial agents: a review of in vitro and animal model studies. J Antimicrob Chemother 64:1130–1138

    Article  PubMed  CAS  Google Scholar 

  111. van Hal SJ, Paterson DL, Gosbell IB (2011) Emergence of daptomycin resistance following vancomycin-unresponsive Staphylococcus aureus bacteraemia in a daptomycin-naïve patient—a review of the literature. Eur J Clin Microbiol Infect Dis 30:603–610

    Article  PubMed  Google Scholar 

  112. Yang SJ, Xiong YQ, Boyle-Vavra S et al (2010) Daptomycin-oxacillin combinations in treatment of experimental endocarditis caused by daptomycin-nonsusceptible strains of methicillin-resistant Staphylococcus aureus with evolving oxacillin susceptibility (the “seesaw effect”). Antimicrob Agents Chemother 54:3169–3179

    Google Scholar 

  113. Klastersky J (2003) Role of quinupristin/dalfopristin in the treatment of Gram-positive nosocomial infections in haematological or oncological patients. Cancer Treat Rev 29:431–440

    Article  PubMed  CAS  Google Scholar 

  114. Guignard B, Vouillamoz J, Giddey M, Moreillon P (2013) A positive interaction between inhibitors of protein synthesis and cefepime in the fight against methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 32(7):899–907

    Article  PubMed  CAS  Google Scholar 

  115. Bhattacharya M, Parakh A, Narang MJ (2009) Tigecycline. Postgrad Med 55:65–68

    Article  CAS  Google Scholar 

  116. European Medicines Agency (EMA) (2011) Questions and answers on the review of Tygacil (tigecycline). Outcome of a renewal procedure EMA, London, UK. [EMA/121925/2011] http://www.ema.europa.eu/docs/en_GB/document_library/Medicine_QA/human/000644/WC500102228.pdf. Accessed 21 Jul 2011

  117. Pfizer (2011) Direct healthcare professional communication on increase in mortality in clinical trials of Tygacil® (tigecycline)

    Google Scholar 

  118. Cai Y, Wang R, Liang B, Bai N, Liu Y (2011) Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious diseases. Antimicrob Agents Chemother 55:1162–1172

    Article  PubMed  CAS  Google Scholar 

  119. Ambrose PG, Meagher AK, Passarell JA et al (2009) Application of patient population-derived pharmacokinetic-pharmacodynamic relationships to tigecycline breakpoint determination for staphylococci and streptococci. Diagn Microbiol Infect Dis 63:155–159

    Article  PubMed  CAS  Google Scholar 

  120. Chong YP, Park SJ, Kim HS et al (2012) In vitro activities of ceftobiprole, dalbavancin, daptomycin, linezolid, and tigecycline against methicillin-resistant Staphylococcus aureus blood isolates: stratified analysis by vancomycin MIC. Diagn Microbiol Infect Dis 73:264–266

    Article  PubMed  CAS  Google Scholar 

  121. Meagher AK, Ambrose PG, Grasela TH, Ellis-Grosse EJ (2005) The pharmacokinetic and pharmacodynamic profile of tigecycline. Clin Infect Dis 41(Suppl 5):S333–S340

    Article  PubMed  CAS  Google Scholar 

  122. Chang MH, Kish TD, Fung HB (2010) Telavancin: a lipoglycopeptide antimicrobial for the treatment of complicated skin and skin structure infections caused by gram-positive bacteria in adults. Clin Ther 32:2160–2185

    Article  PubMed  CAS  Google Scholar 

  123. Stryjewski ME, Graham DR, Wilson SE et al (2008) Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis 46:1683–1693

    Article  PubMed  CAS  Google Scholar 

  124. Nannini EC, Corey GR, Stryjewski ME (2012) Telavancin for the treatment of hospital-acquired pneumonia: findings from the ATTAIN studies. Expert Rev Anti Infect Ther 10:847–854

    Article  PubMed  CAS  Google Scholar 

  125. Polyzos KA, Mavros MN, Vardakas KZ et al (2012) Efficacy and safety of telavancin in clinical trials: a systematic review and meta-analysis. PLoS One 7:e41870

    Article  PubMed  CAS  Google Scholar 

  126. Theravance Inc. (2011) Important update regarding the availability of VIBATIV® (telavancin for injection). http://files.shareholder.com/downloads/THERA/0x0xS1104659-1164687/1080014/filing.pdf. Accessed 2 Jan 2013.

  127. File TM Jr, Wilcox MH, Stein GE (2012) Summary of ceftaroline fosamil clinical trial studies and clinical safety. Clin Infect Dis 55(Suppl 3):S173–S180

    Article  PubMed  CAS  Google Scholar 

  128. Steed M, Vidaillac C, Rybak MJ (2011) Evaluation of ceftaroline activity versus daptomycin (DAP) against DAP-non-susceptible methicillinresistant Staphylococcus aureus strains in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 55:3522–3526

    Article  PubMed  CAS  Google Scholar 

  129. Wilcox MH, Corey GR, Talbot GH (2010) CANVAS 2: the second phase III, randomized double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother 65:53–65

    Google Scholar 

  130. Corey GR, Wilcox MH, Talbot GH (2010) CANVAS 1: the first phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother 65(Suppl 4):S41–S51

    Google Scholar 

  131. Ho TT, Cadena J, Childs LM, Gonzalez-Velez M, Lewis JS II (2012) Methicillin-resistant Staphylococcus aureus bacteraemia and endocarditis treated with ceftaroline salvage therapy. J Antimicrob Chemother 67:1267–1270

    Article  PubMed  CAS  Google Scholar 

  132. Zhanel GG, Sniezek G, Schweizer F et al (2009) Ceftaroline: a novel broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Drugs 69:809–831

    Article  PubMed  CAS  Google Scholar 

  133. Jacqueline C, Caillon J, Le Mabecque V et al (2009) In vivo activity of a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, ceftaroline, against vancomycin-susceptible and -resistant Enterococcus faecalis strains in a rabbit endocarditis model: a comparative study with linezolid and vancomycin. Antimicrob Agents Chemother 53:5300–5302

    Article  PubMed  CAS  Google Scholar 

  134. Jacqueline C, Caillon J, Le Mabecque V et al (2007) In vivo efficacy of ceftaroline (PPI-0903), a new broad-spectrum cephalosporin, compared with linezolid and vancomycin against methicillin-resistant and vancomycin-intermediate Staphylococcus aureus in a rabbit endocarditis model. Antimicrob Agents Chemother 51:3397–3400

    Article  PubMed  CAS  Google Scholar 

  135. Jacqueline C, Amador G, Caillon J et al (2010) Efficacy of the new cephalosporin ceftaroline in the treatment of experimental methicillin-resistant Staphylococcus aureus acute osteomyelitis. J Antimicrob Chemother 65:1749–1752

    Article  PubMed  CAS  Google Scholar 

  136. Lin JC, Aung G, Thomas A et al (2013) The use of ceftaroline fosamil in methicillin-resistant Staphylococcus aureus endocarditis and deep-seated MRSA infections: a retrospective case series of 10 patients. J Infect Chemother 19(1):42–49

    Article  PubMed  Google Scholar 

  137. McCollum M, Rhew DC, Parodi S (2003) Cost analysis of switching from IV vancomycin to po linezolid for the management of methicillin-resistant Staphylococcus species. Clin Ther 25:3173–3189

    Article  PubMed  Google Scholar 

  138. Itani KMF, Weigelt J, Li JZ, Duttagupta S (2005) Linezolid reduces length of stay and duration of intravenous treatment compared with vancomycin for complicated skin and soft tissue infections due to suspected or proven methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 26:442–448

    Article  PubMed  CAS  Google Scholar 

  139. Vesteinsdottir I, Gudlaugsdottir S, Einarsdottir R et al (2012) Risk factors for Clostridium difficile toxin-positive diarrhea: a population-based prospective case-control study. Eur J Clin Microbiol Infect Dis 31:2601–2610

    Article  PubMed  CAS  Google Scholar 

  140. Yuk JH, Dignani MC, Harris RL, Bradshaw MW, Williams TW Jr (1991) Minocycline as an alternative antistaphylococcal agent. Rev Infect Dis 13:1023–1024

    Article  PubMed  CAS  Google Scholar 

  141. Ruhe JJ, Menon A (2007) Tetracyclines as an oral treatment option for patients with community onset skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 51:3298–3303

    Article  PubMed  CAS  Google Scholar 

  142. Nicolau DP, Freeman CD, Nightingale CH, Coe CJ, Quintiliani R (1994) Minocycline versus vancomycin for treatment of experimental endocarditis caused by oxacillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 38:1515–1518

    Article  PubMed  CAS  Google Scholar 

  143. Cunha BA (2010) Minocycline versus doxycycline for meticillin-resistant Staphylococcus aureus (MRSA): in vitro susceptibility versus in vivo effectiveness. Int J Antimicrob Agents 35:517–518

    Article  PubMed  CAS  Google Scholar 

  144. Draghi DC, Sheehan DJ, Hogan P, Sahm DF (2005) In vitro activity of linezolid against key gram-positive organisms isolated in the United States: results of the LEADER 2004 Surveillance Program. Antimicrob Agents Chemother 49:5024–5032

    Article  PubMed  CAS  Google Scholar 

  145. Hasty MB, Klasner A, Kness S (2007) Cutaneous community-associated methicillin-resistant Staphylococcus aureus among all skin and soft-tissue infections in two geographically distant pediatric emergency departments. Acad Emerg Med 14:35–40

    PubMed  Google Scholar 

  146. Moran GJ, Krishnadasan A, Gorwitz RJ et al (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355:666–674

    Article  PubMed  CAS  Google Scholar 

  147. Perlroth J, Kuo M, Tan J, Bayer AS, Miller LG (2008) Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: a systematic review of the literature. Arch Intern Med 168:805–819

    Article  PubMed  CAS  Google Scholar 

  148. Dailey CF, Pagano PJ, Buchanan LV et al (2003) Efficacy of linezolid plus rifampin in an experimental model of methicillin-susceptible Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 47:2655–2658

    Article  PubMed  CAS  Google Scholar 

  149. Miró JM, García-de-la-Mària C, Armero Y et al (2009) Addition of gentamicin or rifampin does not enhance the effectiveness of daptomycin in treatment of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:4172–4177

    Article  PubMed  CAS  Google Scholar 

  150. Egle H, Trittler R, Kummerer K, Lemmen SW (2005) Linezolid and rifampin: drug interaction contrary to expectations? Clin Pharmacol Ther 77:451–453

    Article  PubMed  CAS  Google Scholar 

  151. Jung YJ, Koh Y, Hong SB et al (2010) Effect of vancomycin plus rifampicin in the treatment of nosocomial methicillin-resistant Staphylococcus aureus pneumonia. Crit Care Med 38:175–180

    Article  PubMed  CAS  Google Scholar 

  152. Ramsey KM, Mazer MA (2010) Addition of rifampin to vancomycin for the treatment of pneumonias due to methicillin-resistant Staphylococcus aureus: caveat emptor. Crit Care Med 38:326–327

    Article  PubMed  Google Scholar 

  153. Lefebvre M, Jacqueline C, Amador G et al (2010) Efficacy of daptomycin combined with rifampicin for the treatment of experimental meticillin-resistant Staphylococcus aureus (MRSA) acute osteomyelitis. Int J Antimicrob Agents 36:542–544

    Article  PubMed  CAS  Google Scholar 

  154. Nguyen S, Pasquet A, Legout L et al (2009) Efficacy and tolerance of rifampicin-linezolid compared with rifampicin-cotrimoxazole combinations in prolonged oral therapy for bone and joint infections. Clin Microbiol Infect 15:1163–1169

    Article  PubMed  CAS  Google Scholar 

  155. Daver NG, Shelburne SA, Atmar RL et al (2007) Oral step-down therapy is comparable to intravenous therapy for Staphylococcus aureus osteomyelitis. J Infect 54:539–544

    Article  PubMed  Google Scholar 

  156. Garrigós C, Murillo O, Euba G et al (2010) Efficacy of usual and high doses of daptomycin in combination with rifampin versus alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:5251–5256

    Article  PubMed  CAS  Google Scholar 

  157. John AK, Baldoni D, Haschke M et al (2009) Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother 53:2719–2724

    Article  PubMed  CAS  Google Scholar 

  158. Garrigós C, Murillo O, Lora-Tamayo J et al (2013) Fosfomycin-daptomycin and other fosfomycin combinations as alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:606–610

    Article  PubMed  CAS  Google Scholar 

  159. Zimmerli W, Moser C (2012) Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol 65:158–168

    Article  PubMed  CAS  Google Scholar 

  160. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279:1537–1541

    Article  PubMed  CAS  Google Scholar 

  161. Shopsin B, Zhao X, Kreiswirth BN, Tillotson GS, Drlica K (2004) Are the new quinolones appropriate treatment for community-acquired methicillin-resistant Staphylococcus aureus? Internat J Antimicrob Agents 24:32–34

    Article  CAS  Google Scholar 

  162. San JR, Garcia-Reyne A, Caba P et al (2010) Safety and efficacy of moxifloxacin monotherapy for treatment of treatment of orthopedic implant-related staphylococcal infections. Antimicrob Agents Chemother 54:5161–5166

    Article  CAS  Google Scholar 

  163. Shittu A, Oyedara O, Abegunrin F et al (2102) Characterization of methicillin-susceptible and -resistant staphylococci in the clinical setting: a multicentre study in Nigeria. BMC Infect Dis 12:286

    Article  Google Scholar 

  164. Ellis MW, Lewis JS II (2005) Treatment approaches for community-acquired methicillin-resistant Staphylococcus aureus. Curr Opin Infect Dis 18:496–501

    Article  PubMed  CAS  Google Scholar 

  165. Markowitz N, Quinn EL, Saravolatz LD (1992) Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment for the treatment of Staphylococcus aureus infection. Ann Intern Med 117:390–398

    Article  PubMed  CAS  Google Scholar 

  166. de Górgolas M, Avilés P, Vedejo C, Fernandez Guerrero ML (1995) Treatment of experimental endocarditis due to methicillin-susceptible or methicillin-resistant Staphylococcus aureus with trimethoprim-sulfamethoxazole and antibiotics that inhibit cell wall synthesis. Antimicrob Agents Chemother 39:953–957

    Article  PubMed  Google Scholar 

  167. Cadena J, Nair S, Henao-Martinez AF et al (2011) Dose of trimethoprim-sulfamethoxazole to treat skin and skin structure infections caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:5430–5432

    Article  PubMed  CAS  Google Scholar 

  168. Frei CR, Miller ML, Lewis JS II et al (2010) Trimethoprim-sulfamethoxazole or clindamycin for community-associated MRSA (CA-MRSA) skin infections. J Am Board Fam Med 23:714–719

    Article  PubMed  Google Scholar 

  169. Campbell ML, Marchaim D, Pogue JM et al (2012) Treatment of methicillin-resistant Staphylococcus aureus infections with a minimal inhibitory concentration of 2 μg/mL to vancomycin: old (trimethoprim/sulfamethoxazole) versus new (daptomycin or linezolid) agents. Ann Pharmacother 46:1587–1597

    Article  PubMed  CAS  Google Scholar 

  170. Stein A, Bataille JF, Drancourt M et al (1998) Ambulatory treatment of multi-drug resistant Staphylococcus-infected orthopedic implants with high-dose oral co-trimoxazole (trimethoprim-sulfamethoxazole). Antimicrob Agents Chemother 42:3086–3091

    PubMed  CAS  Google Scholar 

  171. Johnson JR (2003) Linezolid versus vancomycin for methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 36:236–237

    Article  PubMed  Google Scholar 

  172. Iyer S, Jones DH (2004) Community-acquired methicillin-resistant skin infections: a retrospective analysis of clinical presentation and treatment of a local outbreak. J Am Acad Dermatol 50:854–858

    Article  PubMed  Google Scholar 

  173. Howden BP, Grayson ML (2006) Dumb and dumber—the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in Staphylococcus aureus. Clin Infect Dis 42:394–400

    Article  PubMed  CAS  Google Scholar 

  174. Wang JL, Tang HJ, Hsieh PH et al (2012) Fusidic acid for the treatment of bone and joint infections caused by meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 40:103–107

    Article  PubMed  CAS  Google Scholar 

  175. Katopodis GD, Grivea IN, Tsantsaridou AJ et al (2010) Fusidic acid and clindamycin resistance in community-associated, methicillin-resistant Staphylococcus aureus infections in children of Central Greece. BMC Infect Dis 10:351

    Article  PubMed  Google Scholar 

  176. Pfaller MA, Castanheira M, Sader HS, Jones RN (2010) Evaluation of the activity of fusidic acid tested against contemporary Gram-positive clinical isolates from the USA and Canada. Int J Antimicrob Agents 35:282–287

    Article  PubMed  CAS  Google Scholar 

  177. Peel TN, Buising KL, Dowsey MM et al (2013) Outcome of debridement and retention in prosthetic joint infections by methicillin-resistant staphylococci, with special reference to rifampin and fusidic acid combination therapy. Antimicrob Agents Chemother 57:350–355

    Article  PubMed  CAS  Google Scholar 

  178. Fernandes P, Pereira D (2011) Efforts to support the development of fusidic acid in the United States. Clin Infect Dis 52(Suppl 7):S542–S546

    Article  PubMed  Google Scholar 

  179. Craft JC, Moriarty SR, Clark K et al (2011) A randomized, double-blind phase 2 study comparing the efficacy and safety of an oral fusidic acid loading-dose regimen to oral linezolid for the treatment of acute bacterial skin and skin structure infections. Clin Infect Dis 52(Suppl 7):S520–S526

    Article  PubMed  CAS  Google Scholar 

  180. Rayner C, Munckhof WJ (2005) Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Intern Med J 35(Suppl 2):S3–S16

    Article  PubMed  CAS  Google Scholar 

  181. Lamy B, Laurent F, Gallon O et al (2012) Antibacterial resistance, genes encoding toxins and genetic background among Staphylococcus aureus isolated from community-acquired skin and soft tissue infections in France: a national prospective survey. Eur J Clin Microbiol Infect Dis 31:1279–1284

    Article  PubMed  CAS  Google Scholar 

  182. Grif K, Dierich MP, Pfaller K, Miglioli PA, Allerberger F (2001) In vitro activity of fosfomycin in combination with various antistaphylococcal substances. J Antimicrob Chemother 48:209–217

    Article  PubMed  CAS  Google Scholar 

  183. Hamilton-Miller JM (1992) In vitro activity of fosfomycin against ‘problem’ gram-positive cocci. Microbios 71:95–103

    PubMed  CAS  Google Scholar 

  184. Poeppl W, Tobudic S, Lingscheid T et al (2011) Efficacy of fosfomycin in experimental osteomyelitis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:931–933

    Article  PubMed  CAS  Google Scholar 

  185. Schintler MV, Traunmüller F, Metzler J et al (2009) High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother 64:574–578

    Article  PubMed  CAS  Google Scholar 

  186. McCaughey G, McKevitt M, Elborn JS, Tunney MM (2012) Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions. J Cyst Fibros 11:63–72

    Article  Google Scholar 

  187. Lee MC, Rios AM, Aten MF et al (2004) Management and outcome of children with skin and soft tissue abscesses caused by community-acquired methicillin-resistant Staphylococcus aureus. Pediatr Infect Dis J 23:123–127

    Article  PubMed  Google Scholar 

  188. Zhanel GG, Schweizer F, Karlowsky JA (2012) Oritavancin: mechanism of action. Clin Infect Dis 54(Suppl 3):S214–S219

    Article  PubMed  CAS  Google Scholar 

  189. Giamarellou H, O’Riordan W, Harris H et al (2003) Phase 3 trial comparing 3–7 days of oritavancin vs. 10–14 days of vancomycin/cephalexin in the treatment of patients with complicated skin and skin structure infections (cSSSI) [abstract L-739a]. In: Program and abstracts of the 43rd interscience conference of antimicrobial agents and chemotherapy (Chicago, IL). American Society for Microbiology, Washington, DC

    Google Scholar 

  190. Wasilewski M, Disch D, McGill J et al (2001) Equivalence of shorter course therapy with oritavancin vs. vancomycin/cephalexin in complicated skin-skin structure infections (cSSSI) [abstract UL-18]. In: Program and abstracts of the 41st interscience conference on antimicrobial agents and chemotherapy (Chicago, IL). American Society for Microbiology, Washington, DC

    Google Scholar 

  191. Arias CA, Mendes RE, Stilwell MG, Jones RN, Murray BE (2012) Unmet needs and prospects for oritavancin in the management of vancomycin-resistant enterococcal infections. Clin Infect Dis 54(Suppl 3):S233–S238

    Article  PubMed  CAS  Google Scholar 

  192. Loutit JS, O’Riordan W, San Juan J et al (2004) Phase 2 trial comparing four regimens of oritavancin vs. comparator in the treatment of patients with S. aureus bacteremia. Clin Microbiol Infect 10(Suppl 3):S122

    Google Scholar 

  193. Tice A (2012) Oritavancin: a new opportunity for outpatient therapy of serious infections. Clin Infect Dis 54(Suppl 3):S239–S243

    Article  PubMed  CAS  Google Scholar 

  194. Dunbar LM, Milata J, McClure T, Wasilewski MM, SIMPLIFI Study Team (2011) Comparison of the efficacy and safety of oritavancin front-loaded dosing regimens to daily dosing: an analysis of the SIMPLIFI trial. Antimicrob Agents Chemother 55:3476–3484

    Article  PubMed  CAS  Google Scholar 

  195. Zhanel GG, Calic D, Schweizer F et al (2010) New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs 70:859–886

    Article  PubMed  CAS  Google Scholar 

  196. Jauregui LE, Babazadeh S, Seltzer E et al (2005) Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin Infect Dis 41:1407–1415

    Article  PubMed  CAS  Google Scholar 

  197. Gould IM, Bal AM (2013) New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 4(2):185–191

    Article  PubMed  Google Scholar 

  198. Prokocimer PP, Bien P, Deanda C, Pillar CM, Bartizal K (2012) In vitro activity and microbiological efficacy of tedizolid (TR-700) against Gram-positive clinical isolates from a phase 2 study of oral tedizolid phosphate (TR-701) in patients with complicated skin and skin structure infections. Antimicrob Agents Chemother 56:4608–4613

    Article  PubMed  CAS  Google Scholar 

  199. Lemaire S, Kosowska-Shick K, Appelbaum PC et al (2010) Cellular pharmacodynamics of the novel biaryloxazolidinone radezolid: studies with infected phagocytic and nonphagocytic cells, using Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, and Legionella pneumophila. Antimicrob Agents Chemother 54:2549–2559

    Article  PubMed  CAS  Google Scholar 

  200. Lemaire S, Tulkens PM, Van Bambeke F (2011) Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 55:649–658

    Article  PubMed  CAS  Google Scholar 

  201. Covington P, Davenport JM, Andrae D et al (2011) Randomized, double-blind, phase II, multicenter study evaluating the safety/tolerability and efficacy of JNJ-Q2, a novel fluoroquinolone, compared with linezolid for treatment of acute bacterial skin and skin structure infection. Antimicrob Agents Chemother 55:5790–5797

    Article  PubMed  CAS  Google Scholar 

  202. Noel GJ, Draper MP, Hait H, Tanaka SK, Arbeit RD (2012) A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother 56:5650–5654

    Article  PubMed  CAS  Google Scholar 

  203. Vidaillac C, Parra-Ruiz J, Winterfield P, Rybak MJ (2011) In vitro pharmacokinetic/pharmacodynamic activity of NXL103 versus clindamycin and linezolid against clinical Staphylococcus aureus and Streptococcus pyogenes isolates. Int J Antimicrob Agents 38:301–306

    Article  PubMed  CAS  Google Scholar 

  204. Osborne CS, Neckermann G, Fischer E et al (2009) In vivo characterization of the peptide deformylase inhibitor LBM415 in murine infection models. Antimicrob Agents Chemother 53:3777–3781

    Article  PubMed  CAS  Google Scholar 

  205. Vardakas KZ, Mavros MN, Roussos N, Falagas ME (2012) Meta-analysis of randomized controlled trials of vancomycin for the treatment of patients with gram-positive infections: focus on the study design. Mayo Clin Proc 87:349–363

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Anstead, G.M., Cadena, J., Javeri, H. (2014). Treatment of Infections Due to Resistant Staphylococcus aureus . In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 1085. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-664-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-664-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-663-4

  • Online ISBN: 978-1-62703-664-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics