Skip to main content

Mathematical Modeling of Isotope Labeling Experiments for Metabolic Flux Analysis

  • Protocol
  • First Online:
Plant Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1083))

Abstract

Isotope labeling experiments (ILEs) offer a powerful methodology to perform metabolic flux analysis. However, the task of interpreting data from these experiments to evaluate flux values requires significant mathematical modeling skills. Toward this, this chapter provides background information and examples to enable the reader to (1) model metabolic networks, (2) simulate ILEs, and (3) understand the optimization and statistical methods commonly used for flux evaluation. A compartmentalized model of plant glycolysis and pentose phosphate pathway illustrates the reconstruction of a typical metabolic network, whereas a simpler example network illustrates the underlying metabolite and isotopomer balancing techniques. We also discuss the salient features of commonly used flux estimation software 13CFLUX2, Metran, NMR2Flux+, FiatFlux, and OpenFLUX. Furthermore, we briefly discuss methods to improve flux estimates. A graphical checklist at the end of the chapter provides a reader a quick reference to the mathematical modeling concepts and resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephanopoulos G (2002) Metabolic engineering: perspective of a chemical engineer. AIChE J 48:920–926

    Article  CAS  Google Scholar 

  2. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  PubMed  CAS  Google Scholar 

  3. Giegé P, Heazlewood JL, Roessner-Tunali U, Millar AH, Fernie AR, Leaver CJ, Sweetlove LJ (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15:2140–2151

    Article  PubMed  Google Scholar 

  4. Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136:3043–3057

    Article  PubMed  CAS  Google Scholar 

  5. Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511

    Article  PubMed  CAS  Google Scholar 

  6. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  PubMed  CAS  Google Scholar 

  7. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753. doi:10.1093/nar/gkr1014

    Article  PubMed  CAS  Google Scholar 

  8. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46

    Article  PubMed  CAS  Google Scholar 

  9. Sriram G, Shanks JV (2004) Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping. Metab Eng 6:116–132

    Article  PubMed  CAS  Google Scholar 

  10. Lunn JE (2007) Compartmentation in plant metabolism. J Exp Bot 58:35–47

    Article  PubMed  CAS  Google Scholar 

  11. Shanks JV (2005) Phytochemical engineering: combining chemical reaction engineering with plant science. AIChE J 51:2–7

    Article  CAS  Google Scholar 

  12. Nargund S, Sriram G (2013) Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks. Mol Biosyst 9:99–112

    Article  PubMed  CAS  Google Scholar 

  13. Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246

    Article  PubMed  CAS  Google Scholar 

  14. Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W (2012) 13CFLUX2 – high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29:143–145. doi:10.1093/bioinformatics/bts646

    Article  PubMed  Google Scholar 

  15. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  PubMed  CAS  Google Scholar 

  16. Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK (2008) Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283:20621–20627

    Article  PubMed  CAS  Google Scholar 

  17. Sriram G, Rahib L, He J-S, Campos AE, Parr LS, Liao JC, Dipple KM (2008) Global metabolic effects of glycerol kinase overexpression in rat hepatoma cells. Mol Genet Metab 93:145–159

    Article  PubMed  CAS  Google Scholar 

  18. Zamboni N, Fischer E, Sauer U (2005) FiatFlux – a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209

    Article  PubMed  Google Scholar 

  19. Quek L-E, Wittmann C, Nielsen L, Kromer J (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Factor 8:25

    Article  Google Scholar 

  20. Heldt H-W, Piechulla B (2010) Plant biochemistry. Academic, New York, NY

    Google Scholar 

  21. Singh BK (1998) Plant amino acids (books in soils, plants, & the environment). CRC, Boca Raton, FL

    Google Scholar 

  22. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  PubMed  CAS  Google Scholar 

  23. Linka N, Weber APM (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53

    Article  PubMed  CAS  Google Scholar 

  24. Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37

    Article  PubMed  CAS  Google Scholar 

  25. Smith JM, Ness HCV, Abbott MM (2005) Introduction to chemical engineering thermodynamics, 7th edn. McGraw Hill Higher Education, New York, NY

    Google Scholar 

  26. Sriram G, Gonzalez-Rivera O, Shanks JV (2006) Determination of biomass composition of Catharanthus roseus hairy roots for metabolic flux analysis. Biotechnol Prog 22:1659–1663

    PubMed  CAS  Google Scholar 

  27. Graham JWA, Williams TCR, Morgan M, Fernie AR, Ratcliffe RG, Sweetlove LJ (2007) Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 19:3723–3738

    Article  PubMed  CAS  Google Scholar 

  28. Lohr M, Schwender J, Polle JEW (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22

    Article  PubMed  Google Scholar 

  29. Schwender J, Seemann M, Lichtenthaler H, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73–80

    PubMed  CAS  Google Scholar 

  30. Knappe S, Flugge UI, Fischer K (2003) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol 131:1178–1190

    Article  PubMed  CAS  Google Scholar 

  31. Weber APM, Linka N (2011) Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu Rev Plant Biol 62:53–77

    Article  PubMed  CAS  Google Scholar 

  32. Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135:1993–2011

    Article  PubMed  CAS  Google Scholar 

  33. Colón AM, Sengupta N, Rhodes D, Dudareva N, Morgan J (2010) A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida. Plant J 62:64–76

    Article  PubMed  Google Scholar 

  34. Ravikirthi P, Suthers PF, Maranas CD (2011) Construction of an E. coli genome-scale atom mapping model for MFA calculations. Biotechnol Bioeng 108:1372–1382

    Article  PubMed  CAS  Google Scholar 

  35. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes. The art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  36. Möllney M, Wiechert W, Kownatzki D, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol Bioeng 66:86–103

    Article  PubMed  Google Scholar 

  37. Wiechert W, Wurzel M (2001) Metabolic isotopomer labeling systems: Part I: global dynamic behavior. Math Biosci 169:173–205

    Article  PubMed  CAS  Google Scholar 

  38. Van Winden WA, Heijnen JJ, Verheijen PJT (2002) Cumulative bondomers: a new concept in flux analysis from 2D [13C, 1H] COSY NMR data. Biotechnol Bioeng 80:731–745

    Article  PubMed  Google Scholar 

  39. Srour O, Young J, Eldar Y (2011) Fluxomers: a new approach for 13C metabolic flux analysis. BMC Syst Biol 5:129

    Article  PubMed  CAS  Google Scholar 

  40. Schmidt K, Nørregaard LC, Pedersen B, Meissner A, Duus JO, Nielsen JO, Villadsen J (1999) Quantification of intracellular metabolic fluxes from fractional enrichment and 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components. Metab Eng 1:166–179

    Article  PubMed  CAS  Google Scholar 

  41. Wiechert W, de Graaf AA (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55:101–117

    Article  PubMed  CAS  Google Scholar 

  42. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337

    Article  PubMed  CAS  Google Scholar 

  43. Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    Article  PubMed  CAS  Google Scholar 

  44. Winden WAV, Wittmann C, Heinzle E, Heijnen JJ (2002) Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng 80:477–479

    Article  PubMed  Google Scholar 

  45. Van Winden W, Schipper D, Verheijen P, Heijnen J (2001) Innovations in generation and analysis of 2D [13C, 1H] COSY NMR spectra for metabolic flux analysis purposes. Metab Eng 3:322–343

    Article  PubMed  Google Scholar 

  46. Klapa MI, Aon JC, Stephanopoulos G (2003) Ion-trap mass spectrometry used in combination with gas chromatography for high-resolution metabolic flux determination. Biotechniques 34:832–836, 838, 840 passim

    PubMed  CAS  Google Scholar 

  47. Choi J, Antoniewicz MR (2011) Tandem mass spectrometry: a novel approach for metabolic flux analysis. Metab Eng 13:225–233

    Article  PubMed  CAS  Google Scholar 

  48. Sriram G, Fulton DB, Shanks JV (2007) Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13C labeling and comprehensive bondomer balancing. Phytochemistry 68:2243–2257

    Article  PubMed  CAS  Google Scholar 

  49. Libourel IGL, Gehan JP, Shachar-Hill Y (2007) Design of substrate label for steady state flux measurements in plant systems using the metabolic network of Brassica napus embryos. Phytochemistry 68:2211–2221

    Article  PubMed  CAS  Google Scholar 

  50. Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174

    Article  PubMed  CAS  Google Scholar 

  51. Wiechert W, Möllney M, Isermann N, Wurzel M, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66:69–85

    Article  PubMed  CAS  Google Scholar 

  52. Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433–448

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation (award number IOS 0922650).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Author Contributions

SN and GS conceived the chapter. SN wrote a draft of the manuscript and prepared most of the figures. GS wrote sections of the manuscript, prepared Fig. 3, critically edited the manuscript and prepared the final version. Both authors approved the final version of the manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Nargund, S., Sriram, G. (2014). Mathematical Modeling of Isotope Labeling Experiments for Metabolic Flux Analysis. In: Sriram, G. (eds) Plant Metabolism. Methods in Molecular Biology, vol 1083. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-661-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-661-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-660-3

  • Online ISBN: 978-1-62703-661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics