Skip to main content

Applications of Kinetic Modeling to Plant Metabolism

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1083))

Abstract

The importance of kinetic modeling for understanding the control and regulation of complex metabolic networks is increasingly being recognized. Kinetic models encapsulate the available kinetic information of all the enzymes in a pathway, and then calculate the complex behavior that emerges from the interactions between these network components. Kinetic models are particularly useful because they can simulate untested scenarios and thus explore pathway behavior beyond the realm of what is experimentally available or currently feasible. Models can also suggest new experiments in a directed approach.

This chapter provides a brief introduction to kinetic modeling and its application to plant metabolic pathways. A two-pronged strategy is followed: first, a method is presented for further analysis of existing published models, with references to the relevant databases housing such models and instructions on how to load the models into simulation software. Next, the requirements for and processes of constructing and validating a kinetic model from scratch are outlined. To conclude, potential applications of models are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  PubMed  CAS  Google Scholar 

  2. Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249–1252

    Article  PubMed  CAS  Google Scholar 

  3. Rios-Estepa R, Lange BM (2007) Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68:2351–2374

    Article  PubMed  CAS  Google Scholar 

  4. Schallau K, Junker BH (2010) Simulating plant metabolic pathways with enzyme-kinetic models. Plant Physiol 152:1763–1771

    Article  PubMed  CAS  Google Scholar 

  5. Rohwer JM (2012) Kinetic modelling of plant metabolic pathways. J Exp Bot 63:2275–2292

    Article  PubMed  CAS  Google Scholar 

  6. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–3074

    Article  PubMed  CAS  Google Scholar 

  7. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: the systems biology workbench and BioSPICE integration. OMICS 7:355–372

    Article  PubMed  CAS  Google Scholar 

  8. Olivier BG, Rohwer JM, Hofmeyr J-HS (2005) Modelling cellular systems with PySCeS. Bioinformatics 21:560–561

    Article  PubMed  CAS  Google Scholar 

  9. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Novère NL, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  PubMed  CAS  Google Scholar 

  10. le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34:D689–D691

    Article  PubMed  Google Scholar 

  11. Olivier BG, Snoep JL (2004) Web-based kinetic modelling using JWS Online. Bioinformatics 20:2143–2144

    Article  PubMed  CAS  Google Scholar 

  12. Uys L, Botha FC, Hofmeyr J-HS, Rohwer JM (2007) Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phyto-chemistry 68:2375–2392

    Article  CAS  Google Scholar 

  13. Alberty RA (2006) Biochemical thermodynamics: applications of Mathematica. Wiley, Hoboken, NJ

    Book  Google Scholar 

  14. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32:D431–D433

    Article  PubMed  CAS  Google Scholar 

  15. Krebs O, Golebiewski M, Kania R, Mir S, Saric J, Weidemann A, Wittig U, Rojas I (2007) SABIO-RK: a data warehouse for biochemical reactions and their kinetics. J Integr Bioinf 4:49

    Google Scholar 

  16. Krueger S, Giavalisco P, Krall L, Steinhauser M-C, Büssis D, Usadel B, Flügge U-I, Fernie AR, Willmitzer L, Steinhauser D (2011) A topological map of the compartmentalized Arabidopsis thaliana leaf metabolome. PLoS One 6:e17806

    Article  PubMed  CAS  Google Scholar 

  17. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press, London

    Google Scholar 

  18. Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3:41

    Article  PubMed  Google Scholar 

  19. Rohwer JM, Hanekom AJ, Hofmeyr J-HS (2007) A universal rate equation for systems biology. In: Hicks MG, Kettner C (eds) Experimental standard conditions of enzyme characterizations. Proceedings of the 2nd international Beilstein workshop. Beilstein-Institut zur Förderung der Chemischen Wissenschaften, Frankfurt, pp 175–187

    Google Scholar 

  20. Fell DA (1996) Understanding the control of metabolism. Portland Press, London

    Google Scholar 

  21. Rohwer JM, Hofmeyr J-HS (2008) Identifying and characterising regulatory metabolites with generalised supply-demand analysis. J Theor Biol 252:546–554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author acknowledges financial support from the South African National Research Foundation (NRF). Any opinion, findings and conclusions or recommendations expressed in this material are those of the author and therefore the NRF does not accept any liability in regard thereto.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Rohwer, J.M. (2014). Applications of Kinetic Modeling to Plant Metabolism. In: Sriram, G. (eds) Plant Metabolism. Methods in Molecular Biology, vol 1083. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-661-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-661-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-660-3

  • Online ISBN: 978-1-62703-661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics