Skip to main content

Genome-Scale Models of Plant Metabolism

  • Protocol
  • First Online:
Plant Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1083))

Abstract

A genome-scale model (GSM) is an in silico metabolic model comprising hundreds or thousands of chemical reactions that constitute the metabolic inventory of a cell, tissue, or organism. A complete, accurate GSM, in conjunction with a simulation technique such as flux balance analysis (FBA), can be used to comprehensively predict cellular metabolic flux distributions for a given genotype and given environmental conditions. Apart from enabling a user to quantitatively visualize carbon flow through metabolic pathways, these flux predictions also facilitate the hypothesis of new network properties. By simulating the impacts of environmental stresses or genetic interventions on metabolism, GSMs can aid the formulation of nontrivial metabolic engineering strategies. GSMs for plants and other eukaryotes are significantly more complicated than those for prokaryotes due to their extensive compartmentalization and size. The reconstruction of a GSM involves creating an initial model, curating the model, and then rendering the model ready for FBA. Model reconstruction involves obtaining organism-specific reactions from the annotated genome sequence or organism-specific databases. Model curation involves determining metabolite protonation status or charge, ensuring that reactions are stoichiometrically balanced, assigning reactions to appropriate subcellular compartments, deleting generic reactions or creating specific versions of them, linking dead-end metabolites, and filling of pathway gaps to complete the model. Subsequently, the model requires the addition of transport, exchange, and biomass synthesis reactions to make it FBA-ready. This cycle of editing, refining, and curation has to be performed iteratively to obtain an accurate model. This chapter outlines the reconstruction and curation of GSMs with a focus on models of plant metabolism.

Margaret N. Simons, Ashish Misra, and Ganesh Sriram conceived the chapter. Margaret N. Simons wrote an initial draft of the chapter; Ashish Misra and Ganesh Sriram critically edited it; Ganesh Sriram prepared the final version. All authors approved the final version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milne C, Eddy J, Raju R, Ardekani S, Kim P-J, Senger R, Jin Y-S, Blaschek H, Price N (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5:130

    Article  PubMed  CAS  Google Scholar 

  2. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54

    Article  PubMed  Google Scholar 

  3. Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzaeRd metabolic genotype. J Biol Chem 274:17410–17416

    Article  PubMed  CAS  Google Scholar 

  4. Durot M, Bourguignon P-Y, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190

    Article  PubMed  CAS  Google Scholar 

  5. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  PubMed  CAS  Google Scholar 

  6. Seaver SMD, Henry CS, Hanson AD (2012) Frontiers in metabolic reconstruction and modeling of plant genomes. J Exp Bot 63: 2247–2258

    Article  PubMed  CAS  Google Scholar 

  7. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23:617–623

    Article  PubMed  CAS  Google Scholar 

  8. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782

    Article  PubMed  CAS  Google Scholar 

  9. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  PubMed  CAS  Google Scholar 

  10. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    Article  PubMed  CAS  Google Scholar 

  11. Mo ML, Palsson BØ, Herrgård MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37

    Article  PubMed  Google Scholar 

  12. Williams TCR, Poolman MG, Howden AJM, Schwarzlander M, Fell DA, Ratcliffe RG, Sweetlove LJ (2010) A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Plant Physiol 154:311–323

    Article  PubMed  CAS  Google Scholar 

  13. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28: 45–248

    Article  PubMed  CAS  Google Scholar 

  14. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117

    Article  PubMed  Google Scholar 

  15. Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  PubMed  Google Scholar 

  16. Reed JL, Palsson BØ (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185:2692–2699

    Article  PubMed  CAS  Google Scholar 

  17. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed  Google Scholar 

  18. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol 7:535

    Article  PubMed  Google Scholar 

  19. Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309

    Article  PubMed  CAS  Google Scholar 

  20. Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, Nielsen J, Bhumiratana S (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71

    Article  PubMed  Google Scholar 

  21. Schellenberger J, Park JO, Conrad TM, Palsson BØ (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    Article  PubMed  Google Scholar 

  22. Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  PubMed  Google Scholar 

  23. De Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK (2009) AraGEM – a genome-scale reconstruction of the primary metabolic network in Arabidopsis thaliana. Plant Physiol. doi:10.1104/pp. 109.148817

    PubMed  Google Scholar 

  24. Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis thaliana and some of its properties. Plant Physiol 151:1570–1581

    Article  PubMed  CAS  Google Scholar 

  25. Radrich K, Tsuruoka Y, Dobson P, Gevorgyan A, Swainston N, Baart G, Schwartz J-M (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Syst Biol 4:114

    Article  PubMed  Google Scholar 

  26. Saha R, Suthers PF, Maranas CD (2011) Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One 6:e21784

    Article  PubMed  CAS  Google Scholar 

  27. De Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154:1871–1885

    Article  Google Scholar 

  28. Chang RL, Ghamsari L, Manichaikul A, Hom EFY, Balaji S, Fu W, Shen Y, Hao T, Palsson BO, Salehi-Ashtiani K et al (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518

    Article  PubMed  Google Scholar 

  29. Lunn JE (2007) Compartmentation in plant metabolism. J Exp Bot 58:35–47

    Article  PubMed  CAS  Google Scholar 

  30. Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246

    Article  PubMed  CAS  Google Scholar 

  31. Linka N, Weber APM (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53

    Article  PubMed  CAS  Google Scholar 

  32. Sriram G, Gonzalez-Rivera O, Shanks JV (2006) Determination of biomass composition of Catharanthus roseus hairy roots for metabolic flux analysis. Biotechnol Prog 22: 1659–1663

    PubMed  CAS  Google Scholar 

  33. Senger RS (2010) Biofuel production improvement with genome-scale models: the role of cell composition. Biotechnol J 5:671–685

    Article  PubMed  CAS  Google Scholar 

  34. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46

    Article  PubMed  CAS  Google Scholar 

  35. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089

    Article  PubMed  CAS  Google Scholar 

  36. Wrzodek C, Dräger A, Zell A (2011) KEGGtranslator: visualizing and converting the KEGG PATHWAY database to various formats. Bioinformatics 27:2314–2315

    Article  PubMed  CAS  Google Scholar 

  37. Swainston N, Smallbone K, Mendes P, Kell D, Paton N (2011) The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks. J Integr Bioinforma 8(2):186

    Google Scholar 

  38. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11:40–79

    Article  PubMed  CAS  Google Scholar 

  39. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  PubMed  CAS  Google Scholar 

  40. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v.20. Nat Protoc 6:1290–1307

    Article  PubMed  CAS  Google Scholar 

  41. Thorleifsson SG, Thiele I (2011) rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27:2009–2010

    Article  PubMed  CAS  Google Scholar 

  42. Wurtele ES, Li L, Berleant D, Cook D, Dickerson JA, Ding J, Hofmann H, Lawrence M, Lee E, Li J (2007) MetNet: systems biology tools for Arabidopsis. In: Wurtele ES, Nikolau BJ (eds) Concepts in plant metabolomics. Springer, Heidelberg, pp 145–157

    Chapter  Google Scholar 

  43. Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5:76

    Article  PubMed  Google Scholar 

  44. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  45. Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versues the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  PubMed  CAS  Google Scholar 

  46. Roscher A, Kruger NJ, Ratcliffe RG (2000) Strategies for metabolic flux analysis in plants using isotope labelling. J Biotechnol 77: 81–102

    Article  PubMed  CAS  Google Scholar 

  47. Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136: 3043–3057

    Article  PubMed  CAS  Google Scholar 

  48. Masakapalli SK, Lay PL, Huddleston JE, Pollock NL, Kruger NJ, Ratcliffe RG (2010) Subcellular flux analysis of central metabolism in a heterotrophic Arabidopsis thaliana cell suspension using steady-state stable isotope labeling. Plant Physiol 152:602–619

    Article  PubMed  CAS  Google Scholar 

  49. Allen DK, Laclair RW, Ohlrogge JB, Shachar-Hill Y (2012) Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments. Plant Cell Environ 35:1232–1244

    Article  PubMed  CAS  Google Scholar 

  50. Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608

    Article  PubMed  CAS  Google Scholar 

  51. Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Gall SL et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084

    Article  PubMed  CAS  Google Scholar 

  52. Heazlewood JL, Millar AH (2005) AMPDB: the Arabidopsis mitochondrial protein database. Nucleic Acids Res 33:D605–D610

    Article  PubMed  CAS  Google Scholar 

  53. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  54. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  Google Scholar 

  55. Hettema EH, Tabak HF (2000) Transport of fatty acids and metabolites across the peroxisomal membrane. Biochim Biophys Acta 1486: 18–27

    Article  PubMed  CAS  Google Scholar 

  56. Weber AP, Fischer K (2007) Making the connections – the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 581:2215–2222

    Article  PubMed  CAS  Google Scholar 

  57. Weber APM (2004) Solute transporters as connecting elements between cytosol and plastid stroma. Curr Opin Plant Biol 7: 247–253

    Article  PubMed  CAS  Google Scholar 

  58. Bräutigam A, Weber AP (2009) Proteomic analysis of the proplastid envelope membrane provides novel insights into small molecule and protein transport across proplastid membranes. Mol Plant 2:1247–1261

    Article  PubMed  Google Scholar 

  59. Weber AP, von Caemmerer S (2010) Plastid transport and metabolism of C3 and C4 plants—comparative analysis and possible biotechnological exploitation. Curr Opin Plant Biol 13:256–264

    Article  Google Scholar 

  60. Pilalis E, Chatziioannou A, Thomasset B et al (2011) An in silico compartmentalized metabolic model of Brassica napus enables the systemic study of regulatory aspects of plant central metabolism. Biotechnology and Bioengineering 108:1673–1682

    Google Scholar 

  61. Poolman MG, Kundu S, Shaw R et al (2013) Responses to Light Intensity in a Genome-Scale Model of Rice Metabolism. Plant Physiology 162:1060–1072

    Google Scholar 

  62. Lakshmanan M, Zhang Z, Mohanty B et al (2013) Elucidating the Rice Cells Metabolism under Flooding and Drought Stresses Using Flux-based Modelling and Analysis. Plant Physiology 162:2140–2150

    Google Scholar 

Download references

Acknowledgments

This work was funded by the US National Science Foundation (Award IOS-0922650).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Simons, M., Misra, A., Sriram, G. (2014). Genome-Scale Models of Plant Metabolism. In: Sriram, G. (eds) Plant Metabolism. Methods in Molecular Biology, vol 1083. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-661-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-661-0_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-660-3

  • Online ISBN: 978-1-62703-661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics