Skip to main content

CPMG Relaxation Dispersion

  • Protocol
  • First Online:
Protein Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1084))

Abstract

NMR relaxation is sensitive to molecular and internal motion of proteins. 15N longitudinal relaxation rate (R 1), transverse relaxation rate (R 2), and {1H}-15N Nuclear Overhauser Effect (NOE) experiments are often performed to globally elucidate protein dynamics, primarily on the sub-nanosecond timescale. In contrast, constant relaxation time R 2 dispersion experiments are applied to characterize protein equilibrium conformations that interconvert on the millisecond timescale. Information on local conformational equilibria of proteins provides important insights about protein energy landscapes and is useful to interpret molecular recognition mechanisms as well. Here, we describe a protocol for performing 15N Carr–Purcell–Meiboom–Gill (CPMG) R 2 dispersion measurements in solution, including protein preparation, step-by-step experimental parameter settings, and the first step of data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szyperski S, Luginbühl P, Otting G, Güntert P, Wüthrich K (1993) Protein dynamics studied by rotating frame. J Biomol NMR 3:151–164

    PubMed  CAS  Google Scholar 

  2. Davis DG, Perlman ME, London RE (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T-1-Rho and T-2 (CPMG) methods. J Magn Reson B 104:266–275

    Article  PubMed  CAS  Google Scholar 

  3. Orekhov VY, Pervushin KV, Arseniev AS (1994) Backbone dynamics of (1–71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy. Eur J Biochem 219:887–896

    Article  PubMed  CAS  Google Scholar 

  4. Akke M, Palmer AG 3rd (1996) Monitoring macromolecular motions on microsecond to millisecond time scales by R1ρ−R1 constant relaxation time NMR spectroscopy. J Am Chem Soc 118:911–912

    Article  CAS  Google Scholar 

  5. Zinn-Justin S, Berthault P, Guenneugues M, Desvaus H (1997) Off-resonance rf fields in heteronuclear NMR. Application to the study of slow motions. J Biomol NMR 10:363–372

    Article  PubMed  CAS  Google Scholar 

  6. Mulder FA, van Tilborg PJ, Kaptein R, Boelens R (1999) Microsecond time scale dynamics in the RXR DNA-binding domain from a combination of spin-echo and off-resonance rotating frame relaxation measurements. J Biomol NMR 13:275–288

    Article  PubMed  CAS  Google Scholar 

  7. Loria JP, Rance M, Palmer AG 3rd (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121:2331–2332

    Article  CAS  Google Scholar 

  8. Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001) Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:967–975

    Article  PubMed  CAS  Google Scholar 

  9. Tollinger M, Skrynnikov NR, Mulder FA, Forman-Kay JD, Kay LE (2001) Slow dynamics in folded and unfolded states of an SH3 domain. J Am Chem Soc 123:11341–11352

    Article  PubMed  CAS  Google Scholar 

  10. Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during catalysis. Science 295:1520–1523

    Article  PubMed  CAS  Google Scholar 

  11. Mulder FA, Hon B, Mittermaier A, Dahlquist FW, Kay LE (2002) Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. J Am Chem Soc 124:1443–1451

    Article  PubMed  CAS  Google Scholar 

  12. Bosco DA, Eisenmesser EZ, Pochapsky S, Sundquist WI, Kern D (2002) Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc Natl Acad Sci U S A 99:5247–5252

    Article  PubMed  CAS  Google Scholar 

  13. Wang CY, Rance M, Palmer AG 3rd (2003) Mapping chemical exchange in proteins with MW > 50 kD. J Am Chem Soc 125:8968–8969

    Article  PubMed  CAS  Google Scholar 

  14. Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation. Nature 430:586–590

    Article  PubMed  CAS  Google Scholar 

  15. Beach H, Cole R, Gill ML, Loria JP (2005) Conservation of mu s-ms enzyme motions in the apo- and substrate-mimicked state. J Am Chem Soc 127:9167–9176

    Article  PubMed  CAS  Google Scholar 

  16. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  17. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  CAS  Google Scholar 

  18. Mandel AM, Akke M, Palmer AG 3rd (1995) Backbone dynamics of Escherichia-coli ribonuclease Hi - correlations with structure and function in an active enzyme. J Mol Biol 246:144–163

    Article  PubMed  CAS  Google Scholar 

  19. Tjandra N, Wingfield P, Stahl S, Bax A (1996) Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J Biomol NMR 8:273–284

    Article  PubMed  CAS  Google Scholar 

  20. Freedberg DI, Ishima R, Jacob J, Wang YX, Kustanovich I, Louis JM, Torchia DA (2002) Rapid structural fluctuations of the free HIV protease flaps in solution. Protein Sci 11:221–232

    Article  PubMed  CAS  Google Scholar 

  21. Koenig SH, Schillinger WE (1969) Nuclear magnetic relaxation dispersion in protein solutions. J Biol Chem 244:3283–3289

    PubMed  CAS  Google Scholar 

  22. Kimmich R (1979) Field cycling in NMR relaxation spectroscopy: applications in biological, chemical and polymer physics. Bull Magn Reson 1:195–218

    Google Scholar 

  23. Noack F (1986) NMR field-cycling spectroscopy: principles and applications. Prog NMR Spectrosc 18:171–276

    Article  CAS  Google Scholar 

  24. Bertini I, Briganti F, Xia ZC, Luchinat C (1993) Nuclear magnetic relaxation dispersion studies of hexaaquo Mn(II) ions in water-glycerol mixtures. J Magn Reson A 101:198–201

    Article  CAS  Google Scholar 

  25. Hodges MW, Cafiso DS, Polnaszek CF, Lester CC, Bryant RG (1997) Water translational motion at the bilayer interface: an NMR relaxation dispersion measurement. Biophys J 75:2575–2579

    Article  Google Scholar 

  26. Koenig SH, Brown RD (1990) Field-cycling relaxometry of protein solutions and tissue: implications for MRI. Prog NMR spect, 22:487057

    Google Scholar 

  27. Halle B, Denisov VP (1995) A new view of water dynamics in immobilized proteins. Biophys J 69:242–249

    Article  PubMed  CAS  Google Scholar 

  28. Roberts MF, Redfield AG (2004) Phospholipid bilayer surface configuration probed quantitatively by P-31 field-cycling NMR. Proc Natl Acad Sci U S A 101:17066–17071

    Article  PubMed  CAS  Google Scholar 

  29. Kimmich R, Anoardo E (2004) Field-cycling NMR relaxometry. Prog NMR Spectrosc 44:257–320

    Article  CAS  Google Scholar 

  30. Diakova G, Goddard YA, Korb JP, Bryant RG (2010) Water and backbone dynamics in a hydrated protein. Biophys J 98:138–146

    Article  PubMed  CAS  Google Scholar 

  31. Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248

    Article  PubMed  CAS  Google Scholar 

  32. Myint W, Gong Q, Ishima R (2009) Practical aspects of 15N CPMG transverse relaxation experiments for proteins in solution. Concepts Magn Reson 34A:63–75

    Article  CAS  Google Scholar 

  33. Hansen DF, Vallurupalli P, Kay LE (2008) An improved (15)N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904

    Article  PubMed  CAS  Google Scholar 

  34. Ishima R, Torchia DA (2006) Accuracy of optimized chemical-exchange parameters derived by fitting CPMG R2 dispersion profiles when R2(0a) not = R2(0b). J Biomol NMR 34:209–219

    Article  PubMed  CAS  Google Scholar 

  35. McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431

    Article  CAS  Google Scholar 

  36. Luz Z, Meiboom S (1963) Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution - order of the reaction with respect to solvent. J Chem Phys 39:366–370

    Article  CAS  Google Scholar 

  37. Carver JP, Richards RE (1972) General 2-site solution for chemical exchange produced dependence of T2 upon Carr-Purcell pulse separation. J Magn Reson 6:89–105

    CAS  Google Scholar 

  38. Kovrigin EL, Kempf JG, Grey MJ, Loria JP (2006) Faithful estimation of dynamics parameters from CPMG relaxation dispersion measurements. J Magn Reson 180:83–104

    Article  Google Scholar 

  39. Bieri M, Gooley PR (2011) Automated NMR relaxation dispersion data analysis using NESSY. BMC Bioinformatics 12:421

    Article  PubMed  CAS  Google Scholar 

  40. Hansen DF, Lundström P, Velyvis A, Kay LE (2012) Quantifying millisecond exchange dynamics in proteins by CPMG relaxation dispersion NMR using side-chain 1H probes. J Am Chem Soc 134:3178–3189

    Article  PubMed  CAS  Google Scholar 

  41. Kleckner IR, Foster MP (2012) GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data. J Biomol NMR 52:11–22

    Article  PubMed  CAS  Google Scholar 

  42. Hoult DI, Lauterbur PC (1979) The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34:425–433

    CAS  Google Scholar 

  43. Gadian DG, Robinson FNH (1979) Radiofrequency losses in NMR experiments on electrically conducting samples. J Magn Reson 34:449–455

    CAS  Google Scholar 

  44. Kelly AE, Ou HD, Withers R, Dotsch V (2002) Low-conductivity buffers for high-sensitivity NMR measurements. J Am Chem Soc 124:12013–12019

    Article  PubMed  CAS  Google Scholar 

  45. Horiuchi T, Takahashi M, Kikuchi J, Yokoyama S, Maeda H (2005) Effect of dielectric properties of solvents on the quality factor for a beyond 900 MHz cryogenic probe model. J Magn Reson 174:34–42

    Article  PubMed  CAS  Google Scholar 

  46. Ishima R (2011) Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics. Top Curr Chem 326:99–122

    Article  Google Scholar 

  47. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe – a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293

    Article  PubMed  CAS  Google Scholar 

  48. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stefan Bagby and Dennis A. Torchia for critical reading of the manuscript. This project was supported by University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media,New York

About this protocol

Cite this protocol

Ishima, R. (2014). CPMG Relaxation Dispersion. In: Livesay, D. (eds) Protein Dynamics. Methods in Molecular Biology, vol 1084. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-658-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-658-0_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-657-3

  • Online ISBN: 978-1-62703-658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics