Skip to main content

Monitoring Side-Chain Dynamics of Proteins Using 2H Relaxation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1084))

Abstract

Nuclear magnetic resonance (NMR) is a powerful technique capable of monitoring a wide range of motions in proteins on a per residue basis. A variety of 2H relaxation experiments have been developed for monitoring side-chain methyl group motions on the picosecond–nanosecond timescale. These experiments enable determination of the order parameter, S 2 axis, which reports on the rigidity of the C-CH3 bond for side-chain methyl groups. The application of a commonly used subset of these experiments is described in this chapter. It is intended to serve as a practical guide to investigators interested in monitoring side-chain motions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254(5038):1598–1603

    Article  PubMed  CAS  Google Scholar 

  2. Onuchic JN, LutheySchulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600

    Article  PubMed  CAS  Google Scholar 

  3. Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during catalysis. Science 295(5559):1520–1523

    Article  PubMed  CAS  Google Scholar 

  4. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438(7064):117–121

    Article  PubMed  CAS  Google Scholar 

  5. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313(5793):1638–1642

    Article  PubMed  CAS  Google Scholar 

  6. Igumenova TI, Frederick KK, Wand AJ (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem Rev 106(5):1672–1699

    Article  PubMed  CAS  Google Scholar 

  7. Sapienza PJ, Lee AL (2010) Using NMR to study fast dynamics in proteins: methods and applications. Curr Opin Pharmacol 10(6):723–730

    Article  PubMed  CAS  Google Scholar 

  8. Akke M, Bruschweiler R, Palmer AG (1993) Nmr order parameters and free-energy - an analytical approach and its application to cooperative Ca2+ binding by calbindin-D(9k). J Am Chem Soc 115(21):9832–9833

    Article  CAS  Google Scholar 

  9. Li ZG, Raychaudhuri S, Wand AJ (1996) Insights into the local residual entropy of proteins provided by NMR relaxation. Protein Sci 5(12):2647–2650

    Article  PubMed  CAS  Google Scholar 

  10. Yang DW, Kay LE (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J Mol Biol 263(2):369–382

    Article  PubMed  CAS  Google Scholar 

  11. Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448(7151):325–329

    Article  PubMed  CAS  Google Scholar 

  12. Clarkson MW, Lee AL (2004) Long-range dynamic effects of point mutations propagate through side chains in the serine protease inhibitor eglin c. Biochemistry 43(39):12448–12458

    Article  PubMed  CAS  Google Scholar 

  13. Fuentes EJ, Der CJ, Lee AL (2004) Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. J Mol Biol 335(4):1105–1115

    Article  PubMed  CAS  Google Scholar 

  14. Clarkson MW, Gilmore SA, Edgell MH, Lee AL (2006) Dynamic coupling and allosteric behavior in a nonallosteric protein. Biochemistry 45(25):7693–7699

    Article  PubMed  CAS  Google Scholar 

  15. Fuentes EJ, Gilmore SA, Mauldin RV, Lee AL (2006) Evaluation of energetic and dynamic coupling networks in a PDZ domain protein. J Mol Biol 364(3):337–351

    Article  PubMed  CAS  Google Scholar 

  16. Namanja AT, Peng T, Zintsmaster JS, Elson AC, Shakour MG, Peng JW (2007) Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1. Structure 15(3):313–327

    Article  PubMed  CAS  Google Scholar 

  17. Cooper A, Dryden DT (1984) Allostery without conformational change. A plausible model. Eur Biophys J 11(2):103–109

    Article  PubMed  CAS  Google Scholar 

  18. Wand AJ (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol 8(11):926–931

    Article  PubMed  CAS  Google Scholar 

  19. Tsai CJ, del Sol A, Nussinov R (2008) Allostery: absence of a change in shape does not imply that allostery is not at play. J Mol Biol 378(1):1–11

    Article  PubMed  CAS  Google Scholar 

  20. Petit CM, Zhang J, Sapienza PJ, Fuentes EJ, Lee AL (2009) Hidden dynamic allostery in a PDZ domain. Proc Natl Acad Sci USA 106(43):18249–18254

    Article  PubMed  CAS  Google Scholar 

  21. Sheppard D, Sprangers R, Tugarinov V (2010) Experimental approaches for NMR studies of side-chain dynamics in high-molecular-weight proteins. Prog Nucl Magn Reson Spectrosc 56(1):1–45

    Article  PubMed  CAS  Google Scholar 

  22. Jarymowycz VA, Stone MJ (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106(5):1624–1671

    Article  PubMed  CAS  Google Scholar 

  23. Muhandiram DR, Yamazaki T, Sykes BD, Kay LE (1995) Measurement of H-2 T-1 and T-1p relaxation-times in uniformly C-13-labeled and fractionally H-2-labeled proteins in solution. J Am Chem Soc 117(46):11536–11544

    Article  CAS  Google Scholar 

  24. Jacobsen JP, Bildsoe HK, Schaumburg K (1976) Application of density matrix formalism in Nmr-spectroscopy.2. One-spin-1 case in anisotropic phase. J Magn Reson 23(1):153–164

    CAS  Google Scholar 

  25. Mittermaier A, Kay LE (1999) Measurement of methyl H-2 quadrupolar couplings in oriented proteins. How uniform is the quadrupolar coupling constant? J Am Chem Soc 121(45):10608–10613

    Article  CAS  Google Scholar 

  26. Morris GA, Freeman R (1979) Enhancement of nuclear magnetic-resonance signals by polarization transfer. J Am Chem Soc 101(3):760–762

    Article  CAS  Google Scholar 

  27. Millet O, Muhandiram DR, Skrynnikov NR, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in (13)C-labeled and fractionally (2)H-enriched proteins in solution. J Am Chem Soc 124(22):6439–6448

    Article  PubMed  CAS  Google Scholar 

  28. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules.1. Theory and range of validity. J Am Chem Soc 104(17):4546–4559

    Article  CAS  Google Scholar 

  29. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules.2. Analysis of experimental results. J Am Chem Soc 104(17):4559–4570

    Article  CAS  Google Scholar 

  30. Lee AL, Wand AJ (2001) Nuclear magnetic resonance (NMR) spectroscopy for monitoring molecular dynamics in solution. In: José María Valpuesta, eLS. John Wiley & Sons, Ltd. doi:10.1038/npg.els.0003104

    Google Scholar 

  31. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Formankay JD, Kay LE (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src homology-2 domain studied by N-15 Nmr relaxation. Biochemistry 33(19):5984–6003

    Article  PubMed  CAS  Google Scholar 

  32. Lee AL, Flynn PF, Wand AJ (1999) Comparison of H-2 and C-13 NMR relaxation techniques for the study of protein methyl group dynamics in solution. J Am Chem Soc 121(12):2891–2902

    Article  CAS  Google Scholar 

  33. Skrynnikov NR, Millet O, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions. J Am Chem Soc 124(22):6449–6460

    Article  PubMed  CAS  Google Scholar 

  34. Peng JW, Wagner G (1992) Mapping of spectral density-functions using heteronuclear Nmr relaxation measurements. J Magn Reson 98(2):308–332

    CAS  Google Scholar 

  35. Peng JW, Wagner G (1992) Mapping of the spectral densities of N-H bond motions in Eglin-C using heteronuclear relaxation experiments. Biochemistry 31(36):8571–8586

    Article  PubMed  CAS  Google Scholar 

  36. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: Molecular basis of peptide recognition by PDZ. Cell 85(7):1067–1076

    Article  PubMed  CAS  Google Scholar 

  37. Morais Cabral JH, Petosa C, Sutcliffe MJ, Raza S, Byron O, Poy F, Marfatia SM, Chishti AH, Liddington RC (1996) Crystal structure of a PDZ domain. Nature 382(6592):649–652

    Article  PubMed  CAS  Google Scholar 

  38. Birrane G, Chung J, Ladias JA (2003) Novel mode of ligand recognition by the Erbin PDZ domain. J Biol Chem 278(3):1399–1402

    Article  PubMed  CAS  Google Scholar 

  39. Peterson FC, Penkert RR, Volkman BF, Prehoda KE (2004) Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB-PDZ transition. Mol Cell 13(5):665–676

    Article  PubMed  CAS  Google Scholar 

  40. Mishra P, Socolich M, Wall MA, Graves J, Wang Z, Ranganathan R (2007) Dynamic scaffolding in a G protein-coupled signaling system. Cell 131(1):80–92

    Article  PubMed  CAS  Google Scholar 

  41. Bhattacharya S, Dai Z, Li J, Baxter S, Callaway DJ, Cowburn D, Bu Z (2010) A conformational switch in the scaffolding protein NHERF1 controls autoinhibition and complex formation. J Biol Chem 285(13):9981–9994

    Article  PubMed  CAS  Google Scholar 

  42. Ballif BA, Carey GR, Sunyaev SR, Gygi SP (2008) Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res 7(1):311–318

    Article  PubMed  CAS  Google Scholar 

  43. Zhang J, Petit CM, King DS, Lee AL (2011) Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membrane-associated guanylate kinase (MAGUK). J Biol Chem 286(48):41776–41785

    Article  PubMed  CAS  Google Scholar 

  44. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe - a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6(3):277–293

    Article  PubMed  CAS  Google Scholar 

  45. Johnson BA, Blevins RA (1994) Nmr view - a computer-program for the visualization and analysis of Nmr data. J Biomol NMR 4(5):603–614

    Article  PubMed  CAS  Google Scholar 

  46. Goddard TD, Kneller DG. SPARKY 3. University of California, San Francisco

    Google Scholar 

  47. Bagby S, Tong KI, Ikura M (2001) Optimization of protein solubility and stability for protein nuclear magnetic resonance. Methods Enzymol 339:20–41

    Article  PubMed  CAS  Google Scholar 

  48. Lee AL, Wand AJ (2001) Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411(6836):501–504

    Article  PubMed  CAS  Google Scholar 

  49. Lee AL, Sharp KA, Kranz JK, Song XJ, Wand AJ (2002) Temperature dependence of the internal dynamics of a calmodulin-peptide complex. Biochemistry 41(46):13814–13825

    Article  PubMed  CAS  Google Scholar 

  50. Kay LE, Xu GY, Singer AU, Muhandiram DR, Formankay JD (1993) A gradient-enhanced hcch tocsy experiment for recording side-chain H-1 and C-13 correlations in H2O samples of proteins. J Magn Reson Ser B 101(3):333–337

    Article  CAS  Google Scholar 

  51. Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using C-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins. J Am Chem Soc 114(27):10974–10975

    Article  CAS  Google Scholar 

  52. Uhrin D, Uhrinova S, Leadbeater C, Nairn J, Price NC, Barlow PN (2000) 3D HCCH3-TOCSY for resonance assignment of methyl-containing side chains in C-13-labeled proteins. J Magn Reson 142(2):288–293

    Article  PubMed  CAS  Google Scholar 

  53. Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance 3-dimensional Nmr experiments with improved sensitivity. J Magn Reson Ser B 103(3):203–216

    Article  CAS  Google Scholar 

  54. Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic-resonance assignments of the methyl-groups of valine and leucine in the DNA-binding domain of the 434-repressor by biosynthetically directed fractional C-13 labeling. Biochemistry 28(19):7510–7516

    Article  PubMed  CAS  Google Scholar 

  55. Tugarinov V, Muhandiram R, Ayed A, Kay LE (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase G. J Am Chem Soc 124(34):10025–10035

    Article  PubMed  CAS  Google Scholar 

  56. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445(7128):618–622

    Article  PubMed  CAS  Google Scholar 

  57. Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146

    Article  PubMed  CAS  Google Scholar 

  58. Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1(2):749–754

    Article  PubMed  CAS  Google Scholar 

  59. Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43(2):111–119

    Article  PubMed  CAS  Google Scholar 

  60. Sinha K, Jen-Jacobson L, Rule GS (2011) Specific labeling of threonine methyl groups for NMR studies of protein-nucleic acid complexes. Biochemistry 50(47):10189–10191

    Article  PubMed  CAS  Google Scholar 

  61. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media,New York

About this protocol

Cite this protocol

Petit, C.M., Lee, A.L. (2014). Monitoring Side-Chain Dynamics of Proteins Using 2H Relaxation. In: Livesay, D. (eds) Protein Dynamics. Methods in Molecular Biology, vol 1084. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-658-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-658-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-657-3

  • Online ISBN: 978-1-62703-658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics