Skip to main content

The Cre/Lox System to Assess the Development of the Mouse Brain

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1082))

Abstract

Cre-mediated recombination has become a powerful tool to confine gene deletions (conditional knockouts) or overexpression of genes (conditional knockin/overexpression). By spatiotemporal restriction of genetic manipulations, major problems of classical knockouts such as embryonic lethality can be circumvented. Furthermore Cre-mediated recombination has broad applicability in the analysis of the cellular behavior of subpopulations and cell types as well as for genetic fate mapping. This chapter will give an overview about applications for the Cre/LoxP system and their execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512

    Article  PubMed  CAS  Google Scholar 

  2. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265(5168):103–106

    Article  PubMed  CAS  Google Scholar 

  3. Lakso M, Sauer B, Mosinger B, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89(14):6232–6236

    Article  PubMed  CAS  Google Scholar 

  4. Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14(4):381–392

    Article  PubMed  CAS  Google Scholar 

  5. O’Neal KR, Agah R (2007) Conditional targeting: inducible deletion by cre recombinase. Methods Mol Biol 366:309–320

    Article  PubMed  Google Scholar 

  6. Kim JC, Dymecki SM (2009) Genetic fate-mapping approaches: new means to explore the embryonic origins of the cochlear nucleus. Methods Mol Biol 493:65–85

    Article  PubMed  CAS  Google Scholar 

  7. Wilson TJ, Kola I (2001) The LoxP/CRE system and genome modification. Methods Mol Biol 158:83–94

    PubMed  CAS  Google Scholar 

  8. Brault V, Besson V, Magnol L, Duchon A, Hérault Y (2007) Cre/loxP-mediated chromosome engineering of the mouse genome. Handb Exp Pharmacol 178:29–48

    Article  PubMed  CAS  Google Scholar 

  9. Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343–363

    Article  PubMed  CAS  Google Scholar 

  10. Siegal ML, Hartl DL (1996) Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144(2):715–726

    PubMed  CAS  Google Scholar 

  11. Werdien D, Peiler G, Ryffel GU (2001) FLP and Cre recombinase function in Xenopus embryos. Nucleic Acids Res 29(11):E53–3

    Article  PubMed  Google Scholar 

  12. Dong J, Stuart GW (2004) Transgene manipulation in zebrafish by using recombinases. Methods Cell Biol 77:363–379

    Article  PubMed  CAS  Google Scholar 

  13. Gilbertson L (2003) Cre-lox recombination: Creative tools for plant biotechnology. Trends Biotechnol 21(12):550–555

    Article  PubMed  CAS  Google Scholar 

  14. Guo F, Gopaul DN, van Duyne GD (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389(6646):40–46

    Article  PubMed  CAS  Google Scholar 

  15. Nakano M, Odaka K, Ishimura M, Kondo S, Tachikawa N, Chiba J, Kanegae Y, Saito I (2001) Efficient gene activation in cultured mammalian cells mediated by FLP recombinase-expressing recombinant adenovirus. Nucleic Acids Res 29(7):E40

    Article  PubMed  CAS  Google Scholar 

  16. Buchholz F, Angrand P-O, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16(7):657–662

    Article  PubMed  CAS  Google Scholar 

  17. Rodríguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25(2):139–140

    Article  PubMed  Google Scholar 

  18. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757

    Article  PubMed  CAS  Google Scholar 

  19. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93(20):10887–10890

    Article  PubMed  CAS  Google Scholar 

  20. Edwards WF, Young DD, Deiters A (2009) Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells. ACS Chem Biol 4(6):441–445

    Article  PubMed  CAS  Google Scholar 

  21. Hirrlinger J, Scheller A, Hirrlinger PG et al (2009) Split-cre complementation indicates coincident activity of different genes in vivo. PLoS One 4(1):e4286

    Article  PubMed  Google Scholar 

  22. Hirrlinger J, Requardt RP, Winkler U, Wilhelm F, Schulze C, Hirrlinger PG (2009) Split-CreERT2: temporal control of DNA recombination mediated by split-Cre protein fragment complementation. PLoS One 4(12):e8354

    Article  PubMed  Google Scholar 

  23. Wang P, Chen T, Sakurai K, Han B-X, He Z, Feng G, Wang F (2012) Intersectional cre driver lines generated using split-intein mediated split-cre reconstitution. Sci Rep 2:497

    PubMed  Google Scholar 

  24. Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50(2):205–218

    Article  PubMed  CAS  Google Scholar 

  25. Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121(3):479–492

    Article  PubMed  CAS  Google Scholar 

  26. Tasic B, Miyamichi K, Hippenmeyer S, Dani VS, Zeng H, Joo W, Zong H, Chen-Tsai Y, Luo L (2012) Extensions of MADM (mosaic analysis with double markers) in mice. PLoS One 7(3):e33332

    Article  PubMed  CAS  Google Scholar 

  27. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22(3):451–461

    Article  PubMed  CAS  Google Scholar 

  28. Hippenmeyer S, Youn YH, Moon HM, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68(4):695–709

    Article  PubMed  CAS  Google Scholar 

  29. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62

    Article  PubMed  CAS  Google Scholar 

  30. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71

    Article  PubMed  CAS  Google Scholar 

  31. Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140

    Article  PubMed  CAS  Google Scholar 

  32. Luo L (2007) Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Res Rev 55(2):220–227

    Article  PubMed  CAS  Google Scholar 

  33. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141(3):536–548

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128

    Article  PubMed  CAS  Google Scholar 

  35. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85(14):5166–5170

    Article  PubMed  CAS  Google Scholar 

  36. Santoro SW, Schultz PG (2002) Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci USA 99(7):4185–4190

    Article  PubMed  CAS  Google Scholar 

  37. Schnütgen F, Doerflinger N, Calléja C, Wendling O, Chambon P, Ghyselinck NB (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Rev Neurosci 21(5):562–565

    Article  Google Scholar 

  38. Zheng B, Sage M, Sheppeard EA, Jurecic V, Bradley A (2000) Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications. Mol Cell Biol 20(2):648–655

    Article  PubMed  CAS  Google Scholar 

  39. Visel A, Minovitsky S, Dubchak I, Pennacchio LA (2007) VISTA Enhancer Browser–a database of tissue-specific human enhancers. Nucleic Acids Res 35:D88–D92

    Article  PubMed  CAS  Google Scholar 

  40. Engström PG, Fredman D, Lenhard B (2008) Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes. Genome Biol 9(2):R34

    Article  PubMed  Google Scholar 

  41. Visel A, Blow MJ, Li Z et al (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457(7231):854–858

    Article  PubMed  CAS  Google Scholar 

  42. Yee SP, Rigby PW (1993) The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev 7(7A):1277–1289

    Article  PubMed  CAS  Google Scholar 

  43. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  PubMed  CAS  Google Scholar 

  44. Hope IA, Struhl K (1987) GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J 6(9):2781–2784

    PubMed  CAS  Google Scholar 

  45. Espinosa JS, Luo L (2008) Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci 28(10):2301–2312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in F.M.R. laboratory in Friedrich Miescher Institute (Basel, Switzerland) is supported by the Swiss National Science Foundation (Sinergia CRSI33_127440), ARSEP, and the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kratochwil, C.F., Rijli, F.M. (2014). The Cre/Lox System to Assess the Development of the Mouse Brain. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 1082. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-655-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-655-9_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-654-2

  • Online ISBN: 978-1-62703-655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics