Skip to main content

Dynamic Neuroanatomy at Subcellular Resolution in the Zebrafish

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1082))

Abstract

Genetic means to visualize and manipulate neuronal circuits in the intact animal have revolutionized neurobiology. “Dynamic neuroanatomy” defines a range of approaches aimed at quantifying the architecture or subcellular organization of neurons over time during their development, regeneration, or degeneration. A general feature of these approaches is their reliance on the optical isolation of defined neurons in toto by genetically expressing markers in one or few cells. Here we use the afferent neurons of the lateral line as an example to describe a simple method for the dynamic neuroanatomical study of axon terminals in the zebrafish by laser-scanning confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arber S (2012) Motor circuits in action: specification, connectivity, and function. Neuron 74:975–989

    Article  PubMed  CAS  Google Scholar 

  2. Seelig JD, Jayaraman V (2011) Studying sensorimotor processing with physiology in behaving Drosophila. Int Rev Neurobiol 99:169–189

    Article  PubMed  Google Scholar 

  3. Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    Article  PubMed  CAS  Google Scholar 

  4. Piggott BJ, Liu J et al (2011) The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell 147:922–933

    Article  PubMed  CAS  Google Scholar 

  5. Anikeeva P, Andalman AS et al (2011) Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci 15:163–170

    Article  PubMed  Google Scholar 

  6. Ahrens MB, Li JM et al (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485:471–477

    PubMed  CAS  Google Scholar 

  7. Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci 31:69–89

    Article  PubMed  CAS  Google Scholar 

  8. Gahtan E, Baier H (2004) Of lasers, mutants, and see-through brains: functional neuroanatomy in zebrafish. J Neurobiol 59:147–161

    Article  PubMed  Google Scholar 

  9. Friedrich RW, Jacobson GA, Zhu P (2010) Circuit neuroscience in zebrafish. Curr Biol 20:R371–R381

    Article  PubMed  CAS  Google Scholar 

  10. Faucherre A, Baudoin JP, Pujol-Martí J et al (2010) Multispectral four-dimensional imaging reveals that evoked activity modulates peripheral arborization and the selection of plane-polarized targets by sensory neurons. Development 137:1635–1643

    Article  PubMed  CAS  Google Scholar 

  11. Simmich J, Staykov E, Scott E (2012) Zebrafish as an appealing model for optogenetic studies. Prog Brain Res 196:145–162

    Article  PubMed  CAS  Google Scholar 

  12. Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122:2337–2343

    Article  PubMed  CAS  Google Scholar 

  13. Shu X, Lev-Ram V, Olson ES et al (2011) Spiers Memorial lecture. Breeding and building molecular spies. Faraday Discuss 149:63–77

    Article  Google Scholar 

  14. Detrich HW 3rd (2008) Fluorescent proteins in zebrafish cell and developmental biology. Methods Cell Biol 85:219–241

    Article  PubMed  CAS  Google Scholar 

  15. Pujol-Martí J, Baudoin JP, Faucherre A et al (2010) Progressive neurogenesis defines lateralis somatotopy. Dev Dyn 239:1919–1930

    Article  PubMed  Google Scholar 

  16. Collins RT, Linker C, Lewis J (2010) MAZe: a tool for mosaic analysis of gene function in zebrafish. Nat Methods 7:219–223

    Article  PubMed  CAS  Google Scholar 

  17. Hans S, Kaslin J, Freudenreich D et al (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS One 4:e4640

    Article  PubMed  Google Scholar 

  18. Luo L (2007) Single-neuron labeling using the genetic MARCM method. CSH Protoc 2007:pdb.prot4789

    PubMed  Google Scholar 

  19. Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  PubMed  CAS  Google Scholar 

  20. Pan YA, Livet J, Sanes JR et al (2011) Multicolor brainbow imaging in zebrafish. CSH Protoc 2011(1):pdb.prot5546

    Google Scholar 

  21. Raible DW, Kruse GJ (2000) Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 421:189–198

    Article  PubMed  CAS  Google Scholar 

  22. Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233:377–389

    Article  PubMed  CAS  Google Scholar 

  23. Swoger J, Muzzopappa M, López-Schier H et al (2011) 4D retrospective lineage tracing using SPIM for zebrafish organogenesis studies. J Biophotonics 4:122–134

    Article  PubMed  Google Scholar 

  24. Kaufmann A, Mickoleit M, Weber M et al (2012) Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development 139:3242–3247

    Article  PubMed  CAS  Google Scholar 

  25. Huisken J, Stainier DY (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the generosity of C.B. Chien for the Tol2kit and advice and dedicate this article to his memory. We also thank T. Zimmermann and J. Swoger for advice on, respectively, confocal and SPIM microscopy. The original research that encouraged the development of this methodology was supported by a grant from the European Research Council (ERC-2007-StG SENSORINEURAL) and by the Ministerio de Ciencia e Innovación of Spain to H.L. S.A.F. was supported by an Intra-European Marie Curie Fellowship from the European Union.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Faucherre, A., López-Schier, H. (2014). Dynamic Neuroanatomy at Subcellular Resolution in the Zebrafish. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 1082. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-655-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-655-9_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-654-2

  • Online ISBN: 978-1-62703-655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics