Skip to main content

Microinjection Manipulations in the Elucidation of Xenopus Brain Development

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1082))

Abstract

Microinjection has a long and distinguished history in Xenopus and has been used to introduce a surprisingly diverse array of agents into embryos by both intra- and intercellular means. In addition to nuclei, investigators have variously injected peptides, antibodies, biologically active chemicals, lineage markers, mRNA, DNA, morpholinos, and enzymes. While enumerating many of the different microinjection approaches that can be taken, we will focus upon the mechanical operations and options available to introduce mRNA, DNA, and morpholinos intracellularly into early stage embryos for the study of neurogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA 38(5):455–463

    Article  PubMed  CAS  Google Scholar 

  2. Gurdon JB (2006) Nuclear transplantation in Xenopus. Methods Mol Biol 325:1–9

    PubMed  Google Scholar 

  3. Drysdale TA, Crawford MJ (1994) Effects of localized application of retinoic acid on Xenopus laevis development. Dev Biol 162(2):394–401

    Article  PubMed  CAS  Google Scholar 

  4. Dolbeare F (1995) Bromodeoxyuridine: a diagnostic tool in biology and medicine, part II: oncology, chemotherapy and carcinogenesis. Histochem J 27(12):923–964

    PubMed  CAS  Google Scholar 

  5. Roy S, Gardiner DM, Bryant SV (2000) Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of Shh. Dev Biol 218(2):199–205

    Article  PubMed  CAS  Google Scholar 

  6. Otto C, Schutz G, Niehrs C, Glinka A (2000) Dissecting GHRH- and pituitary adenylate cyclase activating polypeptide-mediated signalling in Xenopus. Mech Dev 94(1–2):111–116

    Article  PubMed  CAS  Google Scholar 

  7. Cooke J, Smith JC (1989) Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus-derived inducing factor: experiments testing models for the normal organization of mesoderm. Dev Biol 131(2):383–400

    Article  PubMed  CAS  Google Scholar 

  8. Saint-Jeannet JP, Dawid IB (1994) Vertical versus planar neural induction in Rana pipiens embryos. Proc Natl Acad Sci USA 91(8):3049–3053

    Article  PubMed  CAS  Google Scholar 

  9. Purcell L, Gruia-Gray J, Scanga S, Ringuette M (1993) Developmental anomalies of Xenopus embryos following microinjection of SPARC antibodies. J Exp Zool 265(2):153–164

    Article  PubMed  CAS  Google Scholar 

  10. Kao KR, Elinson RP (1985) Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos. Dev Biol 107(1):239–251

    Article  PubMed  CAS  Google Scholar 

  11. Shi J, Severson C, Yang J, Wedlich D, Klymkowsky MW (2011) Snail2 controls mesodermal BMP/Wnt induction of neural crest. Development 138(15):3135–3145

    Article  PubMed  CAS  Google Scholar 

  12. Khosrowshahian F, Wolanski M, Chang WY, Fujiki K, Jacobs L, Crawford MJ (2005) Lens and retina formation require expression of Pitx3 in Xenopus pre-lens ectoderm. Dev Dyn 234(3):577–589

    Article  PubMed  CAS  Google Scholar 

  13. Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130(21):5155–5167

    Article  PubMed  CAS  Google Scholar 

  14. Rusconi S, Schaffner W (1981) Transformation of frog embryos with a rabbit beta-globin gene. Proc Natl Acad Sci USA 78(8):5051–5055

    Article  PubMed  CAS  Google Scholar 

  15. Etkin LD, Pearman B, Ansah-Yiadom R (1987) Replication of injected DNA templates in Xenopus embryos. Exp Cell Res 169(2):468–477

    Article  PubMed  CAS  Google Scholar 

  16. Etkin LD, Pearman B (1987) Distribution, expression and germ line transmission of exogenous DNA sequences following microinjection into Xenopus laevis eggs. Development 99(1):15–23

    PubMed  CAS  Google Scholar 

  17. Gurdon JB (1962) The transplantation of nuclei between two species of Xenopus. Dev Biol 5:68–83

    Article  PubMed  CAS  Google Scholar 

  18. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122(10):3173–3183

    PubMed  CAS  Google Scholar 

  19. Amaya E, Kroll KL (1999) A method for generating transgenic frog embryos. Methods Mol Biol 97:393–414

    PubMed  CAS  Google Scholar 

  20. Bronchain OJ, Hartley KO, Amaya E (1999) A gene trap approach in Xenopus. Curr Biol 9(20):1195–1198

    Article  PubMed  CAS  Google Scholar 

  21. Sparrow DB, Latinkic B, Mohun TJ (2000) A simplified method of generating transgenic Xenopus. Nucleic Acids Res 28(4):E12

    Article  PubMed  CAS  Google Scholar 

  22. Loeber J, Pan FC, Pieler T (2009) Generation of transgenic frogs. Methods Mol Biol 561:65–72

    Article  PubMed  CAS  Google Scholar 

  23. Ogino H, McConnell WB, Grainger RM (2006) High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1(4):1703–1710

    Article  PubMed  CAS  Google Scholar 

  24. Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T (2006) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn 235(1):247–252

    Article  PubMed  Google Scholar 

  25. Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2(12):975–979

    Article  PubMed  CAS  Google Scholar 

  26. Allen BG, Weeks DL (2006) Using phiC31 integrase to make transgenic Xenopus laevis embryos. Nat Protoc 1(3):1248–1257

    Article  PubMed  CAS  Google Scholar 

  27. Sekkali B, Tran HT, Crabbe E, De Beule C, Van Roy F, Vleminckx K (2008) Chicken beta-globin insulator overcomes variegation of transgenes in Xenopus embryos. FASEB J 22(7):2534–2540

    Article  PubMed  CAS  Google Scholar 

  28. Wetts R, Fraser SE (1991) Microinjection of fluorescent tracers to study neural cell lineages. Development Suppl 2:1–8

    Google Scholar 

  29. Gimlich RL, Braun J (1985) Improved fluorescent compounds for tracing cell lineage. Dev Biol 109(2):509–514

    Article  PubMed  CAS  Google Scholar 

  30. Keller R, Tibbetts P (1989) Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis. Dev Biol 131(2):539–549

    Article  PubMed  CAS  Google Scholar 

  31. Zernicka-Goetz M, Pines J, Ryan K, Siemering KR, Haseloff J, Evans MJ, Gurdon JB (1996) An indelible lineage marker for Xenopus using a mutated green fluorescent protein. Development 122(12):3719–3724

    PubMed  CAS  Google Scholar 

  32. Itoh K, Sokol SY (2011) Polarized translocation of fluorescent proteins in Xenopus ectoderm in response to Wnt signaling. J Vis Exp (51). doi:2700 [pii] 10.3791/2700

  33. Wolanski M, Khosrowshahian F, Kelly LE, El-Hodiri HM, Crawford MJ (2009) xArx2: an aristaless homolog that regulates brain regionalization during development in Xenopus laevis. Genesis 47(1):19–31

    Article  PubMed  CAS  Google Scholar 

  34. Lemaire P, Darras S, Caillol D, Kodjabachian L (1998) A role for the vegetally expressed Xenopus gene Mix.1 in endoderm formation and in the restriction of mesoderm to the marginal zone. Development 125(13):2371–2380

    PubMed  CAS  Google Scholar 

  35. Bayramov AV, Martynova NY, Eroshkin FM, Ermakova GV, Zaraisky AG (2004) The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development. Mech Dev 121(12):1425–1441

    Article  PubMed  CAS  Google Scholar 

  36. Pei W, Noushmehr H, Costa J, Ouspenskaia MV, Elkahloun AG, Feldman B (2007) An early requirement for maternal FoxH1 during zebrafish gastrulation. Dev Biol 310(1):10–22

    Article  PubMed  CAS  Google Scholar 

  37. Sive H, Grainger RM, Harland RM (2000) Early development of Xenopus laevis. A laboratory outline, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  38. Drysdale TA, Elinson RP (1991) Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning. Development 111:469–478

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

M.J.C. is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada Grant #203549.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smoczer, C., Hooker, L., Sachani, S.S., Crawford, M.J. (2014). Microinjection Manipulations in the Elucidation of Xenopus Brain Development. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 1082. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-655-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-655-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-654-2

  • Online ISBN: 978-1-62703-655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics