Skip to main content

Immunostaining of the Developing Embryonic and Larval Drosophila Brain

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1082))

Abstract

Immunostaining is used to visualize the spatiotemporal expression pattern of developmental control genes that regulate the genesis and specification of the embryonic and larval brain of Drosophila. Immunostaining uses specific antibodies to mark expressed proteins and allows their localization to be traced throughout development. This method reveals insights into gene regulation, cell-type specification, neuron and glial differentiation, and posttranslational protein modifications underlying the patterning and specification of the maturing brain. Depending on the targeted protein, it is possible to visualize a multitude of regions of the Drosophila brain, such as small groups of neurons or glia, defined subcomponents of the brain’s axon scaffold, or pre- and postsynaptic structures of neurons. Thus, antibody probes that recognize defined tissues, cells, or subcellular structures like axons or synaptic terminals can be used as markers to identify and analyze phenotypes in mutant embryos and larvae. Several antibodies, combined with different labels, can be used concurrently to examine protein co-localization. This protocol spans over 3–4 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13:8–15

    Article  PubMed  CAS  Google Scholar 

  2. Kim DW, Hirth F (2009) Genetic mechanisms regulating stem cell self-renewal and differentiation in the central nervous system of Drosophila. Cell Adh Migr 3:402–411

    Article  PubMed  Google Scholar 

  3. Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. Bioessays 26:739–751

    Article  PubMed  CAS  Google Scholar 

  4. Hirth F, Reichert H (1999) Conserved genetic programs in insect and mammalian brain development. Bioessays 21:677–684

    Article  PubMed  CAS  Google Scholar 

  5. Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254

    Article  PubMed  CAS  Google Scholar 

  6. Grueber WB, Ye B, Yang CH, Younger S, Borden K, Jan LY, Jan YN (2007) Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development 134:55–64

    Article  PubMed  CAS  Google Scholar 

  7. Selcho M, Pauls D, Han KA, Stocker RF, Thum AS (2009) The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One 126:e5897

    Article  Google Scholar 

  8. White KE, Humphrey DM, Hirth F (2010) The dopaminergic system in the aging brain of Drosophila. Front Neurosci 4:205

    Article  PubMed  Google Scholar 

  9. Muqit MK, Feany MB (2002) Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Revs Neurosci 3:237–243

    Article  CAS  Google Scholar 

  10. Koizumi K, Higashida H, Yoo S et al (2007) RNA interference screen to identify genes required for Drosophila embryonic nervous system development. Proc Natl Acad Sci USA 104:5626–5631

    Article  PubMed  CAS  Google Scholar 

  11. Stochmanski SJ, Therrien M, Laganière J et al (2012) Expanded ATXN3 frameshifting events are toxic in Drosophila and mammalian neuron models. Hum Mol Genet 21:2211–2218

    Article  PubMed  CAS  Google Scholar 

  12. Dunlop J, Morin X, Corominas M et al (2004) glaikit is essential for the formation of epithelial polarity and neuronal development. Curr Biol 14:2039–2045

    Article  PubMed  CAS  Google Scholar 

  13. Tsuji T, Higashida C, Yoshida Y et al (2011) Ect2, an ortholog of Drosophila’s pebble, negatively regulates neurite outgrowth in neuroblastoma × glioma hybrid NG108-15 cells. Cell Mol Neurobiol 31:663–668

    Article  PubMed  CAS  Google Scholar 

  14. Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436

    Article  PubMed  CAS  Google Scholar 

  15. Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242 http://dshb.biology.uiowa.edu/

  16. Patel N (1994) Imaging neuronal subsets and other cell types in whole mount Drosophila embryos and larvae using antibody probes. In: Goldstein LSB, Fryberg E (eds) Methods in Cell Biology, Vol 44. Drosophila melanogaster: Practical Uses in Cell Biology. Academic, New York, NY, For an amended and updated version, follow the link: http://patelweb.berkeley.edu/Images/Protocols/pdf%20files/Antibody%20Methods%202006.pdf

    Google Scholar 

  17. Ashburner M (1989) Drosophila: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  18. Hoffman, G. (2008) Seeing is believing: Use of antibodies in immunohistochemistry and in situ hybridization. In: Short course II of SfN’s 38 annual meeting: 15–19 November 2008; Washington, DC. Society for Neuroscience

    Google Scholar 

  19. Rothwell WF, Sullivan W (2000) Fluorescent analysis of Drosophila embryos. In: Sullivan W, Ashburner M, Hawley RS (eds) Drosophila protocols. Cold Spring Harbor Laboratory Press, New York, NY, p 141

    Google Scholar 

  20. Bonaccorsi S, Giansanti MG, Cenci G, Gatti M (2012) Formaldehyde fixation of Drosophila testes. Cold Spring Harb Protoc. doi:10.1101

    Google Scholar 

  21. Heimbeck G, Bugnon V, Gendre N, Häberlin C, Stocker RF (1999) Smell and taste perception in Drosophila melanogaster larva: toxin expression studies in chemosensory neurons. J Neurosci 19:6599–6609

    PubMed  CAS  Google Scholar 

  22. Stocker RF, Heimbeck G, Gendre N, de Belle JS (1997) Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J Neurobiol 32:443–456

    Article  PubMed  CAS  Google Scholar 

  23. Hassell J, Hand AR (1974) Tissue fixation with diimidoesters as an alternative to aldehydes. I. Comparison of cross-linking and ultrastructure obtained with dimethylsuberimidate and glutaraldehyde. J Histochem Cytochem 22:223–229

    Article  PubMed  CAS  Google Scholar 

  24. Wieschaus E, Nüsslein-Volhard C (1998) Looking at embryos. In: Roberts DB (ed) Drosophila, a practical approach. Oxford University Press Inc, New York, NY, p 205

    Google Scholar 

  25. Ripper D, Schwarz H, Stierhof YD (2008) Cryo-section immunolabelling of difficult to preserve specimens: advantages of cryofixation, freeze-substitution and rehydration. Biol Cell 100:109–123

    Article  PubMed  CAS  Google Scholar 

  26. Rebay I, Fehon R (2000) Generating antibodies against Drosophila proteins. In: Sullivan W, Ashburner M, Hawley RS (eds) Drosophila protocols. Cold Spring Harbor Laboratory Press, New York, NY, p 400

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the UK Medical Research Council (G070149), Royal Society (Hirth2007/R2), Parkinson’s UK (G-0714), Motor Neurone Disease Association (Hirth/Mar12/6085, Hirth/Oct07/6233), Alzheimer Research UK (Hirth/ARUK/2012), and the Fondation Thierry Latran (DrosALS to F.H.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Diaper, D.C., Hirth, F. (2014). Immunostaining of the Developing Embryonic and Larval Drosophila Brain. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 1082. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-655-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-655-9_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-654-2

  • Online ISBN: 978-1-62703-655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics