Skip to main content

Peptide Detection and Structure Determination in Live Cells Using Confocal Raman Microscopy

  • Protocol
  • First Online:
Book cover Peptide Modifications to Increase Metabolic Stability and Activity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1081))

Abstract

Peptides are an important class of bioactive compounds that continue to be developed for a variety of therapeutic uses. The bioactivity of peptides stems in most cases from their ability to enter or bind to the surface of cells to elicit a cellular response, and the primary sequence and secondary structure of the peptide determine this. Therefore, experimental methods that can provide structural information on peptides in live cells are useful for exploring peptide structure–activity relationships and metabolism directly within the targeted cellular environment. In this chapter we describe an experimental methodology for the detection and structure determination of exogenous peptides within living cells using confocal Raman microscopy (CRM). CRM is Raman spectroscopy performed under a confocal microscope. Raman spectroscopy itself has been applied to the study of peptides for several decades and provides a wealth of information, including secondary structure via the amide backbone vibrational modes, cysteine redox status via the S–S and S–H stretches, and disulfide conformation via the S–S stretch. The Raman spectra of peptides are dominated by intense bands associated with the aromatic ring vibrations of Phe, Tyr, and Trp. The positions and intensities of some of these bands are sensitive to the hydrophobicity and pH of the peptide environment and thus can potentially be used as intracellular probes. Heavy-isotope labeling of aromatic ring side chains shifts the spectral positions of the aromatic ring vibrations and enables unambiguous detection of the peptide within cells. We employ this method primarily for the study of cell penetrating peptides in live cells. However, the method could in principle be applied to the study of any type of peptide within any type of cell if the intracellular concentration of the peptide reaches high enough levels to enable detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    Article  PubMed  CAS  Google Scholar 

  2. Ye J, Fox SA, Cudic M, Rezler EM, Lauer JL, Fields GB, Terentis AC (2010) Determination of penetratin secondary structure in live cells with Raman microscopy. J Am Chem Soc 132:980–988

    Article  PubMed  CAS  Google Scholar 

  3. Schweitzer-Stenner R, Soffer JB, Toal S, Verbaro D (2012) Structural analysis of unfolded peptides by Raman spectroscopy. Methods Mol Biol 895:315–346

    Article  PubMed  CAS  Google Scholar 

  4. Smith E, Dent G (2005) Modern Raman spectroscopy: a practical approach. Wiley, Hoboken, NJ

    Google Scholar 

  5. Keresztury G (2002) Raman spectroscopy: theory. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. John Wiley and Sons Ltd, Chichester, pp 71–87

    Google Scholar 

  6. Socrates G (2001) Infrared and Raman characteristic group frequencies. John Wiley and Sons, Chichester

    Google Scholar 

  7. Arp Z, Autrey D, Laane J, Overman SA, Thomas GJ Jr (2001) Tyrosine Raman signatures of the filamentous virus Ff are diagnostic of non-hydrogen-bonded phenoxyls: demonstration by Raman and infrared spectroscopy of p-cresol vapor. Biochemistry 40:2522–2529

    Article  PubMed  CAS  Google Scholar 

  8. Siamwiza MN, Lord RC, Chen MC, Takamatsu T, Harada I, Matsuura H, Shimanouchi T (1975) Interpretation of the doublet at 850 and 830 cm-1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 14:4870–4876

    Article  PubMed  CAS  Google Scholar 

  9. Miura T, Takeuchi H, Harada I (1988) Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics. Biochemistry 27:88–94

    Article  PubMed  CAS  Google Scholar 

  10. Hernández B n, Carelli C, Coïc Y-M, De Coninck J, Ghomi M (2009) Vibrational analysis of amino acids and short peptides in aqueous media. V. The effect of the disulfide bridge on the structural features of the peptide hormone somatostatin-14. J Phys Chem B 113:12796–12803

    Article  PubMed  Google Scholar 

  11. Hruby VJ, Deb KK, Fox J, Bjarnason J, Tu AT (1978) Conformational studies of peptide hormones using laser Raman and circular dichroism spectroscopy. A comparative study of oxytocin agonists and antagonists. J Biol Chem 253:6060–6067

    PubMed  CAS  Google Scholar 

  12. Tu AT, Bjarnason JB, Hruby VJ (1978) Conformation of oxytocin studied by laser Raman spectroscopy. Biochim Biophys Acta 533:530–533

    Article  PubMed  CAS  Google Scholar 

  13. Tu AT, Lee J, Deb KK, Hruby VJ (1979) Laser Raman spectroscopy and circular dichroism studies of the peptide hormones mesotocin, vasotocin, lysine vasopressin, and arginine vasopressin. Conformational analysis. J Biol Chem 254:3272–3278

    PubMed  CAS  Google Scholar 

  14. Bandekar J (1992) Amide modes and protein conformation. Biochim Biophys Acta 1120:123–143

    Article  PubMed  CAS  Google Scholar 

  15. Schweitzer-Stenner R (2006) Advances in vibrational spectroscopy as a sensitive probe of peptide and protein structure—a critical review. Vib Spectrosc 42:98–117

    Article  CAS  Google Scholar 

  16. Williams RW (1986) Protein secondary structure analysis using Raman amide I and amide III spectra. Methods Enzymol 130:311–331

    Article  PubMed  CAS  Google Scholar 

  17. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364

    Article  PubMed  CAS  Google Scholar 

  18. Overman SA, Thomas GJ Jr (1998) Amide modes of the alpha-helix: Raman spectroscopy of filamentous virus fd containing peptide 13C and 2H labels in coat protein subunits. Biochemistry 37:5654–5665

    Article  PubMed  CAS  Google Scholar 

  19. Chen MC, Lord RC (1974) Laser-excited Raman spectroscopy of biomolecules. VI. Some polypeptides as conformational models. J Am Chem Soc 96:4750–4752

    Article  PubMed  CAS  Google Scholar 

  20. Hansen CL, Hansen PR, Callisen TH, Bauer R, Nielsen OF (2002) Secondary structure and association of melittin during and after solid-phase synthesis: a Raman and static light scattering study. J Raman Spectrosc 33:142–146

    Article  CAS  Google Scholar 

  21. Laporte L, Stulz J, Thomas GJ (1997) Solution conformations and interactions of alpha and beta subunits of the Oxytricha nova telomere binding protein: investigation by Raman spectroscopy. Biochemistry 36:8053–8059

    Article  PubMed  CAS  Google Scholar 

  22. Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE (2004) Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein. J Am Chem Soc 126:2399–2408

    Article  PubMed  CAS  Google Scholar 

  23. Brauner JW, Flach CR, Mendelsohn R (2005) A quantitative reconstruction of the amide I contour in the IR spectra of globular proteins: from structure to spectrum. J Am Chem Soc 127:100–109

    Article  PubMed  CAS  Google Scholar 

  24. Moore WH, Krimm S (1975) Transition dipole coupling in Amide I modes of betapolypeptides. Proc Natl Acad Sci USA 72:4933–4935

    Article  PubMed  CAS  Google Scholar 

  25. Myshakina NS, Asher SA (2007) Peptide bond vibrational coupling. J Phys Chem B 111:4271–4279

    Article  PubMed  CAS  Google Scholar 

  26. Taleb A, Diamond J, McGarvey JJ, Beattie JR, Toland C, Hamilton PW (2006) Raman microscopy for the chemometric analysis of tumor cells. J Phys Chem B 110:19625–19631

    Article  PubMed  CAS  Google Scholar 

  27. Matthaus C, Chernenko T, Newmark JA, Warner CM, Diem M (2007) Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys J 93:668–673

    Article  PubMed  CAS  Google Scholar 

  28. van Manen H-J, Kraan YM, Roos D, Otto C (2005) Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc Natl Acad Sci USA 102:10159–10164

    Article  PubMed  Google Scholar 

  29. Krafft C, Knetschke T, Funk RHW, Salzer R (2005) Identification of organelles and vesicles in single cells by Raman microspectroscopic mapping. Vib Spectrosc 38:85–93

    Article  CAS  Google Scholar 

  30. Bonnier F, Knief P, Lim B, Meade AD, Dorney J, Bhattacharya K, Lyng FM, Byrne HJ (2010) Imaging live cells grown on a three dimensional collagen matrix using Raman microspectroscopy. Analyst (Cambridge, UK) 135:3169–3177

    Article  CAS  Google Scholar 

  31. Ortiz C, Zhang D, Xie Y, Ribbe AE, Ben-Amotz D (2006) Validation of the drop coating deposition Raman method for protein analysis. Anal Biochem 353:157–166

    Article  PubMed  CAS  Google Scholar 

  32. Fischer R, Kohler K, Fotin-Mleczek M, Brock R (2004) A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. J Biol Chem 279:12625–12635

    Article  PubMed  CAS  Google Scholar 

  33. Puppels GJ, Olminkhof JH, Segers-Nolten GM, Otto C, de Mul FF, Greve J (1991) Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light. Exp Cell Res 195:361–367

    Article  PubMed  CAS  Google Scholar 

  34. Wei F, Zhang D, Halas NJ, Hartgerink JD (2008) Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides. J Phys Chem B 112:9158–9164

    Article  PubMed  CAS  Google Scholar 

  35. Chen MC, Lord RC (1976) Laser-excited Raman spectroscopy of biomolecules. VIII. Conformational study of bovine serum albumin. J Am Chem Soc 98:990–992

    Article  PubMed  CAS  Google Scholar 

  36. Lord RC, Yu NT (1970) Laser-excited Raman spectroscopy of biomolecules. II. Native ribonuclease and alpha-chymotrypsin. J Mol Biol 51:203–213

    Article  PubMed  CAS  Google Scholar 

  37. Lord RC, Yu NT (1970) Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids. J Mol Biol 50:509–524

    Article  PubMed  CAS  Google Scholar 

  38. Overman SA, Thomas GJ Jr (1995) Raman spectroscopy of the filamentous virus Ff (fd, fl, M13): structural interpretation for coat protein aromatics. Biochemistry 34:5440–5451

    Article  PubMed  CAS  Google Scholar 

  39. Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36:307–319

    Article  CAS  Google Scholar 

  40. De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the following people for their contributions to this work: Ms. Sara Fox and Dr. Evonne Rezler for cell culture assistance; Dr. Mare Cudic for synthesizing the heavy-labeled penetratin peptide; Mr. Storm Stillman for measuring the oxytocin spectrum; Mr. Richard Lantz for the GGGGGG-NH2 calculation using Gaussian.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Terentis, A.C., Ye, J. (2013). Peptide Detection and Structure Determination in Live Cells Using Confocal Raman Microscopy. In: Cudic, P. (eds) Peptide Modifications to Increase Metabolic Stability and Activity. Methods in Molecular Biology, vol 1081. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-652-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-652-8_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-651-1

  • Online ISBN: 978-1-62703-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics