Skip to main content

Polar Plot Representation of Time-Resolved Fluorescence

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Measuring changes in a molecule’s fluorescence emission is a common technique to study complex biological systems such as cells and tissues. Although the steady-state fluorescence intensity is frequently used, measuring the average amount of time that a molecule spends in the excited state (the fluorescence lifetime) reveals more detailed information about its local environment. The lifetime is measured in the time domain by detecting directly the decay of fluorescence following excitation by short pulse of light. The lifetime can also be measured in the frequency domain by recording the phase and amplitude of oscillation in the emitted fluorescence of the sample in response to repetitively modulated excitation light. In either the time or frequency domain, the analysis of data to extract lifetimes can be computationally intensive. For example, a variety of iterative fitting algorithms already exist to determine lifetimes from samples that contain multiple fluorescing species. However, recently a method of analysis referred to as the polar plot (or phasor plot) is a graphical tool that projects the time-dependent features of the sample’s fluorescence in either the time or frequency domain into the Cartesian plane to characterize the sample’s lifetime. The coordinate transformations of the polar plot require only the raw data, and hence, there are no uncertainties from extensive corrections or time-consuming fitting in this analysis. In this chapter, the history and mathematical background of the polar plot will be presented along with examples that highlight how it can be used in both cuvette-based and imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fatt P (1964) An analysis of the transverse electrical impedance of striated muscle. Proc R Soc Lond B Biol Sci 159:606–651

    Article  PubMed  CAS  Google Scholar 

  2. Rigaud B, Hamzaoui L, Frikha MR et al (1995) In vitro tissue characterization and modeling using electrical impedance measurements in the 100 Hz–10 MHz frequency range. Physiol Meas 16:A15–A28

    Article  PubMed  CAS  Google Scholar 

  3. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. I. Alternating current characteristics. J Chem Phys 9:341–351

    Article  CAS  Google Scholar 

  4. Hanley QS, Clayton AH (2005) AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers. J Microsc 218:62–67

    Article  PubMed  CAS  Google Scholar 

  5. Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15:805–815

    Article  PubMed  CAS  Google Scholar 

  6. Jameson DM, Gratton E, Hall RD (1984) The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl Spectros Rev 20:55–106

    Article  CAS  Google Scholar 

  7. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16

    Article  PubMed  CAS  Google Scholar 

  8. Halvorson HR (1979) Relaxation kinetics of glutamate dehydrogenase self-association by pressure perturbation. Biochemistry 18:2480–2487

    Article  PubMed  CAS  Google Scholar 

  9. Brigham EO (1988) The fast Fourier transform and its application. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  10. Bracewell RA (1978) The Fourier transformation and its applications. McGraw-Hill Kogakusha, Ltd., Hamburg

    Google Scholar 

  11. Gratton E, Jameson DM, Hall RD (1984) Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng 13:105–124

    Article  PubMed  CAS  Google Scholar 

  12. Gratton E, Limkeman M, Lakowicz JR et al (1984) Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys J 46:479–486

    Article  PubMed  CAS  Google Scholar 

  13. Gratton E, Limkeman M (1983) A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J 44:315–324

    Article  PubMed  CAS  Google Scholar 

  14. Noomnarm U, Clegg RM (2009) Fluorescence lifetimes: fundamentals and interpretations. Photosynth Res 101:181–194

    Article  PubMed  CAS  Google Scholar 

  15. Birks J (1970) Photophysics of aromatic molecules. Wiley-Interscience, New York

    Google Scholar 

  16. Lakowicz J (2006) Principles of fluorescence spectroscopy. Springer, New York, NY

    Book  Google Scholar 

  17. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  18. Kasha M (1952) Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. J Chem Phys 20:71–74

    Article  CAS  Google Scholar 

  19. Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Adv Biochem Eng Biotechnol 95:245–265

    PubMed  Google Scholar 

  20. Haraguchi T, Shimi T, Koujin T et al (2002) Spectral imaging fluorescence microscopy. Genes Cells 7:881–887

    Article  PubMed  CAS  Google Scholar 

  21. Rueck A, Huelshoff C, Kinzler I et al (2007) SLIM: a new method for molecular imaging. Microsc Res Tech 70:485–492

    Article  CAS  Google Scholar 

  22. Hanley QS, Arndt-Jovin DJ, Jovin TM (2002) Spectrally resolved fluorescence lifetime imaging microscopy. Appl Spectrosc 56:155–166

    Article  CAS  Google Scholar 

  23. Chen YC, Clegg RM (2011) Spectral resolution in conjunction with polar plots improves the accuracy and reliability of FLIM measurements and estimates of FRET efficiencies. J Microsc 244:21–37

    Article  PubMed  CAS  Google Scholar 

  24. Strat D, Dolp F, von Einem B et al (2011) Spectrally resolved fluorescence lifetime imaging microscopy: Förster resonant energy transfer global analysis with a one- and two-exponential donor model. J Biomed Opt 16:026002

    Article  PubMed  Google Scholar 

  25. Spring BQ, Clegg RM (2009) Image analysis for denoising full-field frequency-domain fluorescence lifetime images. J Microsc 235:221–237

    Article  PubMed  CAS  Google Scholar 

  26. Boens N, Qin W, Basaric N et al (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79:2137–2149

    Article  PubMed  CAS  Google Scholar 

  27. Tsurui H, Nishimura H, Hattori S et al (2000) Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition. J Histochem Cytochem 48:653–662

    Article  PubMed  CAS  Google Scholar 

  28. Sjoback R, Nygren J, Kubista M (1995) Absorption and fluorescence properties of fluorescein. Spectrochimica Acta A 51:L7–L21

    Article  Google Scholar 

  29. Elsliger MA, Wachter RM, Hanson GT et al (1999) Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38:5296–5301

    Article  PubMed  CAS  Google Scholar 

  30. Hawe A, Sutter M, Jiskoot W (2007) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499

    Article  Google Scholar 

  31. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388

    Article  PubMed  CAS  Google Scholar 

  32. Förster T (1951) Fluoreszenz organischer Verbindungen. Vandenhoeck & Ruprecht, Göttingen, Germany

    Google Scholar 

  33. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437:55–75

    Article  Google Scholar 

  34. Förster T (1993) Intermolecular energy migration and fluorescence. In: Mielczarek EV, Greenbaum E, Knox RS (eds) Biological physics. American Institute of Physics, New York, pp 148–160

    Google Scholar 

  35. Gratton E, Silva N, Mei G et al (1992) Fluorescence lifetime distribution of folded and unfolded proteins. Int J Quantum Chem 42:1479–1489

    Article  CAS  Google Scholar 

  36. Malachowski G, Clegg RM, Redford GI (2007) Analytic solutions to modeling exponential and harmonic functions using Chebyshev polynomials: fitting frequency-domain lifetime images with photobleaching. J Microsc 228:282–295

    Article  PubMed  Google Scholar 

  37. Buranachai C, Kamiyama D, Chiba A et al (2008) Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis. J Fluoresc 18:929–942

    Article  PubMed  CAS  Google Scholar 

  38. Hubbard BB (1998) In: Peters AK (ed) The world according to wavelets. The story of a mathematical technique in the making. 2nd edn. Wellesley, Natick, MA, pp 111–259

    Google Scholar 

  39. Rao RM, Bopardikar AS (1998) Wavelet transforms. Introduction to theory and applications. Addison-Wesley, Reading, MA

    Google Scholar 

  40. Walker JS (1997) Fourier analysis and wavelet analysis. Not Am Math Soc 44:658–670

    Google Scholar 

  41. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–692

    Article  Google Scholar 

  42. Willet RM, Nowak RD (2004) Fast multiresolution photon-limited image reconstruction. IEEE Int Symp Biomed Imaging 2:1192–1195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eichorst, J.P., Wen Teng, K., Clegg, R.M. (2014). Polar Plot Representation of Time-Resolved Fluorescence. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics