Skip to main content

Single-Molecule Fluorescence of Nucleic Acids

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Single-molecule fluorescence studies of nucleic acids are revolutionizing our understanding of fundamental cellular processes related to DNA and RNA processing mechanisms. Detailed molecular insights into DNA repair, replication, transcription, and RNA folding and function are continuously being uncovered by using the full repertoire of single-molecule fluorescence techniques. The fundamental reason behind the stunning growth in the application of single-molecule techniques to study nucleic acid structure and dynamics is the unmatched ability of single-molecule fluorescence, and mostly single-molecule FRET, to resolve heterogeneous static and dynamic populations and identify transient and low-populated states without the need for sample synchronization. New advances in DNA and RNA synthesis, post-synthetic dye-labeling methods, immobilization and passivation strategies, improved dye photophysics, and standardized analysis methods have enabled the implementation of single-molecule techniques beyond specialized laboratories. In this chapter, we introduce the practical aspects of applying single-molecule techniques to investigate nucleic acid structure, dynamics, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walter NG, Huang C-Y, Manzo AJ, Sobhy MA (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5:475–489

    Article  PubMed  CAS  Google Scholar 

  2. Hohlbein J, Gryte K, Heilemann M, Kapanidis AN (2010) Surfing on a new wave of single-molecule fluorescence methods. Phys Biol 7:031001 (22pp)

    Article  PubMed  Google Scholar 

  3. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improved dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835

    Article  PubMed  CAS  Google Scholar 

  4. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and longlasting single-molecule fluorescence imaging. Nat Methods 3:891–893

    Article  PubMed  CAS  Google Scholar 

  5. Ditzler MA, Rueda D, Mo J et al (2008) A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Res 36:7088–7099

    Article  PubMed  CAS  Google Scholar 

  6. Okumus B, Wilson TJ, Lilley DMJ, Ha T (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys J 87:2798–2806

    Article  PubMed  CAS  Google Scholar 

  7. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. In: Lilley DMJ, Dahlberg JE (eds) Methods enzymology, vol 211. Academic, San Diego, CA, pp 353–388

    Google Scholar 

  8. Santoso Y, Joyce CM, Potapova O et al (2010) Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc Natl Acad Sci USA 107:715–720

    Article  PubMed  CAS  Google Scholar 

  9. Blouin S, Craggs TD, Lafontaine DA, Penedo JC (2009) Functional studies of DNA-protein interactions using FRET techniques. In: Moss T, Leblanc B (eds) Methods in molecular biology, vol 543. Humana Press, Totowa, NJ, pp 475–502

    Google Scholar 

  10. Holden SJ, Uphoff S, Hohlbein J et al (2010) Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophys J 99:3102–3111

    Article  PubMed  CAS  Google Scholar 

  11. Zhuang X, Kim H, Pereira MJB et al (2002) Correlating structural dynamics and function in single ribozyme molecules. Science 296:1473–1476

    Article  PubMed  CAS  Google Scholar 

  12. Hohng S, Wilson TJ, Tan E et al (2004) Conformational flexibility of four-way junctions in RNA. J Mol Biol 336:69–79

    Article  PubMed  CAS  Google Scholar 

  13. Joo C, McKinney SA, Lilley DMJ, Ha T (2004) Exploring rare conformational species and ionic effects in DNA Holliday Junctions using single-molecule spectroscopy. J Mol Biol 341:739–751

    Article  PubMed  CAS  Google Scholar 

  14. Eichhorn CD, Feng J, Suddala KC et al (2011) Unraveling the structural complexity in a single-stranded RNA tail: implications for efficient ligand binding in the prequeuosine riboswitch. Nucleic Acids Res 40:1345–1355

    Article  PubMed  Google Scholar 

  15. Karymov MA, Chinnaraj M, Bogdanov A et al (2008) Structure, dynamics and branch migration of a DNA Holliday Junction: a single-molecule fluorescence and modeling study. Biophys J 95:4372–4383

    Article  PubMed  CAS  Google Scholar 

  16. Karymov MA, Bogdanov A, Lyubchenko YL (2008) Single molecule fluorescence analysis of branch migration of Holliday Junctions: effect of DNA sequence. Biophys J 95:1239–1247

    Article  PubMed  CAS  Google Scholar 

  17. Shirude PS, Okumus B, Ying L et al (2007) Single-molecule conformational analysis of g-quadruplex formation in the promoter DNA duplex of the proto-oncogene c-kit. J Am Chem Soc 129:7484–7485

    Article  PubMed  CAS  Google Scholar 

  18. Jena PV, Shirude PS, Okumus B et al (2009) G-quadruplex DNA bound by a synthetic ligand is highly dynamic. J Am Chem Soc 131:12522–12523

    Article  PubMed  CAS  Google Scholar 

  19. Lee JY, Okumus B, Kim DS, Ha T (2005) Extreme conformational diversity in human telomeric DNA. Proc Natl Acad Sci USA 102:18938–18943

    Article  PubMed  CAS  Google Scholar 

  20. Steiner M, Karunatilaka KS, Sigel RKO, Rueda D (2008) Single-molecule studies of group II intron ribozymes. Proc Natl Acad Sci USA 105:13853–13858

    Article  PubMed  CAS  Google Scholar 

  21. McDowell SE, Jun JM, Walter NG (2010) Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations. RNA 16:2414–2426

    Article  PubMed  CAS  Google Scholar 

  22. Pereira MJB, Nikolova EN, Hiley SL et al (2008) Single VS ribozyme molecules reveal dynamic and hierarchical folding toward catalysis. J Mol Biol 382:496–509

    Article  PubMed  CAS  Google Scholar 

  23. Tan E, Wilson TJ, Nahas MK et al (2003) A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc Natl Acad Sci 100:9308–9313

    Article  PubMed  CAS  Google Scholar 

  24. Penedo JC, Wilson TJ, Jayasena SD et al (2004) Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA 10:880–888

    Article  PubMed  CAS  Google Scholar 

  25. Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463

    Article  PubMed  CAS  Google Scholar 

  26. Roth A, Winkler W, Regulski E et al (2007) A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol 14:308–317

    Article  PubMed  CAS  Google Scholar 

  27. Brenner MD, Scanlan MS, Nahas MK et al (2010) Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Biochemistry 49:1596–1605

    Article  PubMed  CAS  Google Scholar 

  28. Lemay J-F, Penedo JC, Tremblay R et al (2006) Folding of the adenine riboswitch. Chem Biol 13:857–868

    Article  PubMed  CAS  Google Scholar 

  29. Heppell B, Blouin S, Dussault A-M et al (2011) Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Nat Chem Biol 7:384–392

    Article  PubMed  CAS  Google Scholar 

  30. Haller A, Rieder U, Aigner M et al (2011) Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7:393–400

    Article  PubMed  CAS  Google Scholar 

  31. Wood S, Ferré-D’Amaré AR, Rueda D (2012) Allosteric tertiary interactions preorganize the c-di-GMP riboswitch and accelerate ligand binding. ACS Chem Biol 7:920–927

    Article  PubMed  CAS  Google Scholar 

  32. Lemay J-F, Penedo JC, Mulhbacher J, Lafontaine DA (2009) Molecular basis of RNA-mediated gene regulation on the adenine riboswitch by single-molecule approaches. Methods Mol Biol 540:65–76

    Article  PubMed  CAS  Google Scholar 

  33. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74:3597–3619

    Article  CAS  Google Scholar 

  34. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  PubMed  CAS  Google Scholar 

  35. Okamoto K, Sannohe Y, Mashimo T et al (2008) G-quadruplex structure of human telomere DNA examined by single molecule FRET and BrG-substitution. Bioorg Med Chem 16:6873–6879

    Article  PubMed  CAS  Google Scholar 

  36. Cisse I, Okumus B, Joo C, Ha T (2007) Fueling protein-DNA interactions inside porous nanocontainers. Proc Natl Acad Sci USA 104:12646–12650

    Article  PubMed  CAS  Google Scholar 

  37. Ishitsuka Y, Okumus B, Arslan S et al (2010) Temperature-independent porous nanocontainers for single-molecule fluorescence studies. Anal Chem 82:9694–9701

    Article  PubMed  CAS  Google Scholar 

  38. Torella JP, Holden SJ, Santoso Y et al (2011) Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. Biophys J 100:1568–1577

    Article  PubMed  CAS  Google Scholar 

  39. Blanco M, Walter NG (2010) Analysis of complex single-molecule FRET time trajectories. Methods Enyzmol 472:153–178

    Article  CAS  Google Scholar 

  40. Life Technologies (2012) Fluorophors and their amine-reactive derivatives. In: The Molecular Probes Handbook, 11th Edition. Invitrogen, section 1.3. http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html. Accessed 25 July 2012

  41. Integrated DNA Technologies, Inc. (2012) Dyes. IDT. http://eu.idtdna.com/catalog/Modifications/Dyes.aspx. Accessed 25 July 2012

  42. Chen J, Tsai A, Petrov A, Puglisi JD (2012) Nonfluorescent quenchers to correlate single-molecule conformational and compositional dynamics. J Am Chem Soc 134:5734–5737

    Article  PubMed  CAS  Google Scholar 

  43. Life Technologies (2012) Fluorophors and their amine-reactive derivatives. In: The Molecular Probes Handbook, 11th Edition. Invitrogen, section 1.6. http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html. Accessed 25 July 2012

  44. Integrated DNA Technologies, Inc. (2012) Products and Services 2012. IDT. http://eu.idtdna.com/Pages/docs/catalog-product-documentation/idt-product-catalog-2012.pdf?sfvrsn=6. Accessed 25 July 2012

  45. Le Reste L, Hohlbein J, Gryte K, Kapanidis AN (2012) Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET. Biophys J 102:2658–2668

    Article  PubMed  Google Scholar 

  46. McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951

    Article  PubMed  CAS  Google Scholar 

  47. Qin F, Li L (2004) Model-based fitting of single-channel dwell-time distributions. Biophys J 87:1657–1671

    Article  PubMed  CAS  Google Scholar 

  48. Bronson JE, Fei J, Hofman JM et al (2009) Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J 97:3196–3205

    Article  PubMed  CAS  Google Scholar 

  49. Morse DP (2007) Direct selection of RNA beacon aptamers. Biochem Biophys Res Commun 359:94–101

    Article  PubMed  CAS  Google Scholar 

  50. Kurata S, Ohtsuki T, Suzuki T, Watanabe K (2003) Quick two-step RNA ligation employing periodate oxidation. Nucleic Acids Res 31:e145

    Article  PubMed  Google Scholar 

  51. Rieder U, Kreutz C, Micura R (2010) Folding of a transcriptionally acting Pre-Q1 riboswitch. Proc Natl Acad Sci USA 107:10804–10809

    Article  PubMed  CAS  Google Scholar 

  52. Rasnik I, McKinney SA, Ha T (2005) Surfaces and orientations: much to FRET about? Acc Chem Res 38(7):542–548

    Article  PubMed  CAS  Google Scholar 

  53. Walter NG (2001) Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 25:19–30

    Article  PubMed  CAS  Google Scholar 

  54. Baker JL, Sudarsan N, Weinberg Z et al (2012) Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335:233–235

    Article  PubMed  CAS  Google Scholar 

  55. Zhuang X, Bartley LE, Babcock HP et al (2000) A single-molecule study of RNA catalysis and folding. Science 288:2048–2051

    Article  PubMed  CAS  Google Scholar 

  56. Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595–617

    Article  PubMed  CAS  Google Scholar 

  57. Campos LA, Liu J, Wang X et al (2011) A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy. Nat Methods 8:143–146

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

McCluskey, K., Shaw, E., Lafontaine, D.A., Penedo, J.C. (2014). Single-Molecule Fluorescence of Nucleic Acids. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_35

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics