Skip to main content

Optimization of Fluorescent Proteins

  • Protocol
  • First Online:
Book cover Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy techniques. This has allowed the (in situ) study of biomolecules with unprecedented resolution, specificity, sensitivity, and ease of labeling. However, brighter FPs, more photostable FPs, and FPs that display an even better compatibility with biophysical microspectroscopic techniques are still highly desired. The key characteristics of FPs—absorption spectrum, emission spectrum, brightness, fluorescence lifetime, maturation rate, oligomeric state, photostability, pH sensitivity, and functionality in protein fusions—determine their application. This chapter will describe these key features and present several experimental protocols to optimize them.

The optimization procedure contains three steps. First the amino acid sequence of a template FP is changed via random or site-directed mutagenesis. A primary screening based on fluorescence intensity, fluorescence lifetime, and emission spectrum is applied on the FP libraries expressed in bacteria. The most promising mutants are isolated, purified, and characterized in vitro. In this step all key characteristics are determined experimentally. Finally the new FPs are evaluated for use in vivo. The protein production and maturation is monitored in bacteria, while transfected mammalian cells report on the photostability, relative brightness, and correct localization to various subcellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613

    Article  PubMed  CAS  Google Scholar 

  2. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  PubMed  CAS  Google Scholar 

  3. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504

    Article  PubMed  CAS  Google Scholar 

  4. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  PubMed  CAS  Google Scholar 

  5. Rizzo M, Piston D (2005) Optimization of cyan fluorescent protein fluorescence for Förster resonance energy transfer. Microsc Microanal 11:4–5

    Article  PubMed  Google Scholar 

  6. Kremers G-J, Goedhart J, van Munster EB, Gadella TWJ (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biochemistry 45:6570–6580

    Article  PubMed  CAS  Google Scholar 

  7. Goedhart J, van Weeren L, Hink MA, Vischer NOE, Jalink K, Gadella TWJ (2010) Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat Methods 7:137–139

    Article  PubMed  CAS  Google Scholar 

  8. Goedhart J, Stetten von D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751–759

    Google Scholar 

  9. Lelimousin M, Noirclerc-Savoye M, Lazareno-Saez C, Paetzold B, Le Vot S, Chazal R, Macheboeuf P, Field MJ, Bourgeois D, Royant A (2009) Intrinsic dynamics in ECFP and Cerulean control fluorescence quantum yield. Biochemistry 48:10038–10046

    Article  PubMed  CAS  Google Scholar 

  10. Elsliger MA, Wachter RM, Hanson GT, Kallio K, Remington SJ (1999) Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38:5296–5301

    Article  PubMed  CAS  Google Scholar 

  11. McAnaney TB, Zeng W, Doe CFE, Bhanji N, Wakelin S, Pearson DS, Abbyad P, Shi X, Boxer SG, Bagshaw CR (2005) Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): a unifying mechanism. Biochemistry 44:5510–5524

    Article  PubMed  CAS  Google Scholar 

  12. Terskikh A, Fradkov A, Ermakova G, Zaraisky A, Tan P, Kajava AV, Zhao X, Lukyanov S, Matz M, Kim S, Weissman I, Siebert P (2000) “Fluorescent timer”: protein that changes color with time. Science 290:1585–1588

    Article  PubMed  CAS  Google Scholar 

  13. Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20:83–87

    Article  PubMed  CAS  Google Scholar 

  14. Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44:7085–7094

    Article  PubMed  CAS  Google Scholar 

  15. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    Article  PubMed  CAS  Google Scholar 

  16. Hanson GT, McAnaney TB, Park ES, Rendell MEP, Yarbrough DK, Chu S, Xi L, Boxer SG, Montrose MH, Remington SJ (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41:15477–15488

    Article  PubMed  CAS  Google Scholar 

  17. Dennig A, Shivange AV, Marienhagen J, Schwaneberg U (2011) OmniChange: the sequence independent method for simultaneous site-saturation of five codons. PLoS One 6:e26222

    Article  PubMed  CAS  Google Scholar 

  18. Sawano A, Miyawaki A (2000) Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res 28:E78

    Article  PubMed  CAS  Google Scholar 

  19. Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    Article  PubMed  CAS  Google Scholar 

  20. Van Munster EB, Gadella TWJ (2004) phiFLIM: a new method to avoid aliasing in frequency-domain fluorescence lifetime imaging microscopy. J Microsc 213(29–38)

    Google Scholar 

  21. van Munster EB, Gadella TWJ (2004) Suppression of photobleaching-induced artifacts in frequency-domain FLIM by permutation of the recording order. Cytometry A 58:185–194

    Article  PubMed  Google Scholar 

  22. Velapoldi RA, Tønnesen HH (2004) Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J Fluoresc 14:465–472

    Article  PubMed  CAS  Google Scholar 

  23. Kapusta P (2010) Absolute diffusion coefficients: compilation of reference data for FCS calibration. http://www.picoquant.com/technotes/appnote_diffusion_coefficients.pdf

  24. Zhang D, Lans H, Vermeulen W, Lenferink A, Otto C (2008) Quantitative fluorescence correlation spectroscopy reveals a 1000-fold increase in lifetime of protein functionality. Biophys J 95:3439–3446

    Article  PubMed  CAS  Google Scholar 

  25. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  26. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  PubMed  CAS  Google Scholar 

  27. Sun Y, Day RN, Periasamy A (2011) Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat Protoc 6:1324–1340

    Article  PubMed  CAS  Google Scholar 

  28. Boens N, Qin W, Basarić N, Hofkens J, Ameloot M, Pouget J, Lefèvre J-P, Valeur B, Gratton E, vandeVen M, Silva ND, Engelborghs Y, Willaert K, Sillen A, Rumbles G, Phillips D, Visser AJWG, van Hoek A, Lakowicz JR, Malak H, Gryczynski I, Szabo AG, Krajcarski DT, Tamai N, Miura A (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79:2137–2149

    Article  PubMed  CAS  Google Scholar 

  29. Skakun VV, Hink MA, Digris AV, Engel R, Novikov EG, Apanasovich VV, Visser AJWG (2005) Global analysis of fluorescence fluctuation data. Eur Biophys J 34:323–334

    Article  PubMed  Google Scholar 

  30. Enderlein J, Gregor I, Patra D, Fitter J (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5:155–161

    Article  PubMed  CAS  Google Scholar 

  31. Skakun VV, Engel R, Digris AV, Borst JW, Visser AJWG (2011) Global analysis of autocorrelation functions and photon counting distributions. Front Biosci (Elite Ed) 3:489–505

    Google Scholar 

  32. VanEngelenburg SB, Palmer AE (2008) Fluorescent biosensors of protein function. Curr Opin Chem Biol 12:60–65

    Article  PubMed  CAS  Google Scholar 

  33. Becker W (2010) The bh TCSPC handbook. Berlin. http://www.becker-hickl.de/handbook.htm

  34. Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:13573–13578

    Article  PubMed  CAS  Google Scholar 

  35. Schwille P, Kummer S, Heikal AA, Moerner WE, Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97:151–156

    Article  PubMed  CAS  Google Scholar 

  36. Hendrix J, Flors C, Dedecker P, Hofkens J, Engelborghs Y (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94:4103–4113

    Article  PubMed  CAS  Google Scholar 

  37. Pitot C (2012) Copie de ABBE Zeiss refractometer1. Zeiss. http://macro.lsu.edu/howto/Abbe_refractometer.pdf

  38. Borst JW, Hink MA, van Hoek A, Visser AJWG (2005) Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins. J Fluoresc 15:153–160

    Article  PubMed  CAS  Google Scholar 

  39. Suhling K, Siegel J, Phillips D, French P (2002) Imaging the environment of green fluorescent protein. Biophys J 83:3589–3595

    Article  PubMed  CAS  Google Scholar 

  40. Espagne A, Erard M, Madiona K, Derrien V, Jonasson G, Lévy B, Pasquier H, Melki R, Mérola F (2011) Cyan fluorescent protein carries a constitutive mutation that prevents its dimerization. Biochemistry 50:437–439

    Article  PubMed  CAS  Google Scholar 

  41. Chen Y, Wei L-N, Müller JD (2003) Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy. Proc Natl Acad Sci USA 100:15492–15497

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Richard N. Day (Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA) for the kind donation of the plasmid with cDNA encoding mCerulean3. This work was enabled through “Middelgroot” investment grants (834.07.003 and 834.09.003) and Echo grant (711.01.01812) from the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bindels, D.S., Goedhart, J., Hink, M.A., van Weeren, L., Joosen, L., Gadella, T.W.J. (2014). Optimization of Fluorescent Proteins. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics