Skip to main content

Upconversion Spectrophotofluorometry

  • Protocol
  • First Online:
Book cover Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

  • 6631 Accesses

Abstract

As the other chapters attest, sensitivity of fluorescent molecules to their local environment has created powerful tools in the study of molecular biology, particularly in the study of protein, DNA, and lipid dynamics. Surprisingly, even events faster than the nanosecond lifetimes of fluorophores are important in protein function, and in particular, events lasting just a few ps reflect on water motion and the coupled dynamics of proteins. These ultrafast phenomena can best be studied by using the same laser that excites fluorescence to also “strobe” the emission, providing sub-picosecond time slices of the action. We explain the strobing “upconversion” technique and some limits on its execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franken PA, Weinreich G, Peters CW et al (1961) Generation of optical harmonics. Phys Rev Lett 7:118–119

    Article  Google Scholar 

  2. Hallidy LA, Topp MR (1977) Picosecond luminescence detection using type-2 phase-matched frequency-conversion. Chem Phys Lett 46:8–14

    Article  CAS  Google Scholar 

  3. Kahlow MA, Jarzeba W, Dubruil TP et al (1988) Ultrafast emission-spectroscopy in the ultraviolet by time-gated upconversion. Rev Sci Instrum 59:1098–1109

    Article  CAS  Google Scholar 

  4. Bradforth SE, Jimenez R, Vanmourik F et al (1995) Excitation transfer in the core light-harvesting complex (LH-1) of rhodobacter-sphaeroides-an ultrafast fluorescence depolarization and annihilation study. J Phys Chem 99:16179–16191

    Article  CAS  Google Scholar 

  5. Kennis JTM, Gobets B, van Stokkum IHM et al (2001) Light harvesting by chlorophylls and carotenoids in the photosystem I core complex of Synechococcus elongatus: a fluorescence upconversion study. J Phys Chem B 105:4485–4494

    Article  Google Scholar 

  6. Macpherson AN, Gillbro T (1998) Solvent dependence of the ultrafast S-2-S-1 internal conversion rate of beta-carotene. J Phys Chem A 102:5049–5058

    Article  CAS  Google Scholar 

  7. Longworth JW (1983) Time-resolved fluorescence spectroscopy in biochemistry and biology. Plenum Press, New York

    Google Scholar 

  8. Beechem JM, Brand L (1985) Time-resolved fluorescence of proteins. Annu Rev Biochem 54:43–71

    Article  PubMed  CAS  Google Scholar 

  9. Christiaens B, Symoens S, Vanderheyden S et al (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur J Biochem 269:2918–2926

    Article  PubMed  CAS  Google Scholar 

  10. Schauerte JA, Schlyer BD, Steel DG et al (1995) Nanosecond time-resolved circular-polarization of fluorescence-study of NADH bound to horse liver alcohol-dehydrogenase. Proc Natl Acad Sci USA 92:569–573

    Article  PubMed  CAS  Google Scholar 

  11. Gryczynski Z, Lubkowski J, Bucci E (1995) Heme-protein interactions in horse heart myoglobin at neutral pH and exposed to acid investigated by time-resolved fluorescence in the picosecond to nanosecond time range. J Biol Chem 270:19232–19237

    Article  PubMed  CAS  Google Scholar 

  12. Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227

    Article  PubMed  CAS  Google Scholar 

  13. Lakowicz JR, Keating-Nakamoto S (1984) Red-edge excitation of fluorescence and dynamic properties of protein and membranes. Biochemistry 23:3013–3021

    Article  PubMed  CAS  Google Scholar 

  14. Alcala JR, Gratton E, Prendergast FG (1987) Interpretation of fluorescence decays in proteins using continuous lifetime distribuition. Biophys J 51:925–936

    Article  PubMed  CAS  Google Scholar 

  15. Szabo AG, Rayner DM (1980) Fluorescence decay of tryptophan conformers in aqueous solution. J Am Chem Soc 102:554–563

    Article  CAS  Google Scholar 

  16. Knutson JR, Beechem JM, Brand L (1983) Simultaneous analysis of multiple fluorescence decay curves-a global approach. Chem Phys Lett 102:501–507

    Article  CAS  Google Scholar 

  17. Dahms TES, Willis KJ, Szabo AG (1995) Conformational heterogeneity of tryptophan in a protein crystal. J Am Chem Soc 117:2321–2326

    Article  CAS  Google Scholar 

  18. Adams PD, Chen Y, Ma K et al (2002) Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc 124:9278–9286

    Article  PubMed  CAS  Google Scholar 

  19. Davenport L, Knutson JR, Brand L (1986) Excited-state proton-transfer of equilenin and dihydroequilenin-interaction with bilayer vesicles. Biochemistry 25:1186–1195

    Article  PubMed  CAS  Google Scholar 

  20. Toptygin D, Brand L (2000) Spectrally- and time-resolved fluorescence emission of indole during solvent relaxation: a quantitative model. Chem Phys Lett 322:496–502

    Article  CAS  Google Scholar 

  21. Pan CP, Muino PL, Barkley MD et al (2011) Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment. J Phys Chem B 115:3245–3253

    Article  PubMed  CAS  Google Scholar 

  22. Jimenez R, Fleming GR, Kumar PV et al (1994) Femtosecond solvation dynamics of water. Nature 369:471–473

    Article  CAS  Google Scholar 

  23. Maroncelli M, Fleming GR (1987) Picosecond solvation dynamics of Coumarin-153-the importance of molecular aspects of solvation. J Chem Phys 86:6221–6239

    Article  CAS  Google Scholar 

  24. Janes SM, Holtom G, Ascenzi P et al (1987) Fluorescence and energy-transfer of tryptophans in aplysia mioglobin. Biophys J 51:653–660

    Article  PubMed  CAS  Google Scholar 

  25. Gryczynski Z, Lubkowski J, Bucci E (1997) Intrinsic fluorescence of hemoglobins and myoglobins. In: Fluorescence spectroscopy, vol 278. (L. Brand ed) Elsevier Academic Press Inc, San Diego, pp 538–569

    Google Scholar 

  26. Ruggiero AJ, Todd DC, Fleming GR (1990) Subpicosecond fluorescence anisotropy studies of tryptophan in water. J Am Chem Soc 112:1003–1014

    Article  CAS  Google Scholar 

  27. Shen XH, Knutson JR (2001) Subpicosecond fluorescence spectra of tryptophan in water. J Phys Chem B 105:6260–6265

    Article  CAS  Google Scholar 

  28. Peon J, Pal SK, Zewail AH (2002) Hydration at the surface of the protein Monellin: dynamics with femtosecond resolution. Proc Natl Acad Sci USA 99:10964–10969

    Article  PubMed  CAS  Google Scholar 

  29. Pal SK, Peon J, Zewail AH (2002) Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. Proc Natl Acad Sci USA 99:1763–1768

    Article  PubMed  CAS  Google Scholar 

  30. Zhong DP, Pal SK, Zhang DQ et al (2002) Femtosecond dynamics of rubredoxin: tryptophan solvation and resonance energy transfer in the protein. Proc Natl Acad Sci USA 99:13–18

    Article  PubMed  CAS  Google Scholar 

  31. Zhang LY, Wang LJ, Kao YT et al (2007) Mapping hydration dynamics around a protein surface. Proc Natl Acad Sci USA 104:18461–18466

    Article  PubMed  CAS  Google Scholar 

  32. Qiu WH, Zhang LY, Okobiah O et al (2006) Ultrafast solvation dynamics of human serum albumin: correlations with conformational transitions and site-selected recognition. J Phys Chem B 110:10540–10549

    Article  PubMed  CAS  Google Scholar 

  33. Zhang LY, Kao YT, Qiu WH et al (2006) Femtosecond studies of tryptophan fluorescence dynamics in proteins: local solvation and electronic quenching. J Phys Chem B 110:18097–18103

    Article  PubMed  CAS  Google Scholar 

  34. Chen RF, Knutson JR, Ziffer H et al (1991) Fluorescence of tryptophan dipeptides—correlation with the rotamer model. Biochemistry 30:5184–5195

    Article  PubMed  CAS  Google Scholar 

  35. Chen Y, Liu B, Yu HT et al (1996) The peptide bond quenches indole fluorescence. J Am Chem Soc 118:9271–9278

    Article  CAS  Google Scholar 

  36. Xu JH, Knutson JR (2009) Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay. J Phys Chem B 113:12084–12089

    Article  PubMed  CAS  Google Scholar 

  37. Xu JH, Chen JJ, Toptygin D, Tcherkasskaya O et al (2009) Femtosecond fluorescence spectra of tryptophan in human gamma-crystallin mutants: site-dependent ultrafast quenching. J Am Chem Soc 131:16751–16757

    Article  PubMed  CAS  Google Scholar 

  38. Halder M, Mukherjee P, Bose S et al (2007) Solvation dynamics in protein environments: comparison of fluorescence upconversion measurements of coumarin 153 in monomeric hemeproteins with molecular dynamics simulations. J Chem Phys 127:055101

    Article  PubMed  Google Scholar 

  39. Wang W, Donini O, Reyes CM, Kollman PA (2001) Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein–ligand, protein–protein, and protein–nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 30:211–243

    Article  PubMed  CAS  Google Scholar 

  40. Halle B, Andersson T, Forsen S et al (1981) Protein hydration from water O-17 magnetic-relaxation. J Am Chem Soc 103:500–508

    Article  CAS  Google Scholar 

  41. Halle B, Wennerstrom H (1981) Interpretation of magnetic-resonance data from water nuclei in heterogeneous systems. J Chem Phys 75:1928–1943

    Article  CAS  Google Scholar 

  42. Roccatano D, Amadei A, Di Nola A et al (1999) A molecular dynamics study of the 41–56 beta-hairpin from B1 domain of protein G. Protein Sci 8:2130–2143

    Article  PubMed  CAS  Google Scholar 

  43. Callis PR, Liu TQ (2004) Quantitative prediction of fluorescence quantum yields for tryptophan in proteins. J Phys Chem B 108:4248–4259

    Article  CAS  Google Scholar 

  44. Callis PR, Vivian JT (2003) Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations. Quenching by charge transfer to the peptide backbone. Chem Phys Lett 369:409–414

    Article  CAS  Google Scholar 

  45. Biesso A, Xu J, Muino PL, Callis P et al Tryptophan dynamics in GB1 sense very different phenomena on the picosecond and nanosecond timescales (submitted)

    Google Scholar 

  46. Xu J, Chen B,Callis P, Rozeboom H et al (2012) Femtosecond fluorescence dynamics of tryptophan and 5-fluorotryptophan in monellin: slow water relaxation unmasked Biophys J 104(2):681a

    Google Scholar 

  47. Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80:2093–2109

    Article  PubMed  CAS  Google Scholar 

  48. Elove GA, Chaffotte AF, Roder H et al (1992) Early steps in cytochrome-c-folding probed by time-resolved circular-dichroism and fluorescence spectroscopy. Biochemistry 31:6876–6883

    Article  PubMed  CAS  Google Scholar 

  49. Pal SK, Peon J, Bagchi B et al (2002) Biological water: femtosecond dynamics of macromolecular hydration. J Phys Chem B 106:12376–12395

    Article  CAS  Google Scholar 

  50. Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37:9976–9982

    Article  PubMed  CAS  Google Scholar 

  51. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  52. Davidson RS (1996) The photodegradation of some naturally occurring polymers. J Photochem Photobiol B 33:3–25

    Article  CAS  Google Scholar 

  53. Paik DC, Dillon J (2000) The nitrite/alpha crystallin reaction: a possible mechanism in lens matrix damage. Exp Eye Res 70:73–80

    Article  PubMed  CAS  Google Scholar 

  54. Grossweiner LI (1984) Photochemistry of proteins-a review. Curr Eye Res 3:137–144

    Article  PubMed  CAS  Google Scholar 

  55. Pirie A (1971) Formation of N'-Formylkynurenine in proteins from lens and other sources by exposure to sunlight. Biochem J 125:203–208

    PubMed  CAS  Google Scholar 

  56. Fukunaga Y, Katsuragi Y, Izumi T et al (1982) Fluorescence characteristics of Kynurenine and N'-Formylkynurenine-their use as reporters of the environment of tryptophan-62 in hen egg-white lysozyme. J Biochem 92:129–141

    PubMed  CAS  Google Scholar 

  57. Grosvenor AJ, Morton JD, Dyer JM (2010) Profiling of residue-level photo-oxidative damage in peptides. Amino Acids 39:285–296

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Biesso, A., Xu, J., Knutson, J.R. (2014). Upconversion Spectrophotofluorometry. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics