Skip to main content

Nanometrology

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Methods and protocols are described when using fluorescence metrology to determine the average nanoparticle (np) size in colloids in the range of 1–10 nm. The technique is based on determining the rotational correlation time of the np from the decay of fluorescence anisotropy of a dye that is electrostatically or covalently attached to the np as it undergoes Brownian rotation. The np size is then calculated from the Stokes–Einstein equation. The exemplar of silica nps is presented, but the approach can also be applied to other types of nps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birch DJS (2011) Fluorescence detections and directions. Meas Sci Technol 22:8. doi:10.1088/0957-0233/22/5/052002

  2. Apperson K, Karolin J, Martin RW, Birch DJS (2009) Nanoparticle metrology standards based on the time-resolved fluorescence anisotropy of silica colloids. Meas Sci Technol 20:11. doi:10.1088/0957-0233/20/2/025310

    Google Scholar 

  3. Birch DJS, Geddes CD (2000) Sol-gel particle growth studied using fluorescence anisotropy: an alternative to scattering techniques. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:2977–2980. doi:10.1103/PhysRevE.62.2977

    Article  PubMed  CAS  Google Scholar 

  4. Green DL, Lin JS, Lam YF, Hu MZ, Schaefer DW, Harris MT (2003) Size, volume fraction, and nucleation of Stober silica nanoparticles. J Colloid Interface Sci 266:346–358. doi:10.1016/S0021-9797(03)00610-6

    Article  PubMed  CAS  Google Scholar 

  5. Yip P, Karolin J, Birch DJS (2012) Fluorescence anisotropy metrology of electrostatically and covalently labelled silica nanoparticles. Meas Sci Technol 23:8. doi:10.1088/0957-0233/23/8/084003

  6. Kačenka M, Kaman O, Kotek J et al (2011) Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles. J Mater Chem 21:157–164. doi:10.1039/C0JM01258K

    Article  Google Scholar 

  7. Van Blaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8:2921–2931. doi:10.1021/la00048a013

    Article  Google Scholar 

  8. Imhof A, Megens M, Engelberts JJ et al (1999) Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres. J Phys Chem B 9:1408–1415. doi:10.1021/jp983241q

    Article  Google Scholar 

  9. Birch DJS, Imhof RE (2002) Time-domain fluorescence spectroscopy using time-correlated single-photon counting. In: Lakowicz JR (ed) Topics of fluorescence spectroscopy, vol 1. Springer, New York, pp 1–96. doi:10.1007/0-306-47057-8_1

  10. O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic, London

    Google Scholar 

  11. O’Hagan WJ, McKenna M, Sherrington DC et al (2002) MHz LED source for nanosecond fluorescence sensing. Meas Sci Technol 13:84–91. doi:10.1088/0957-0233/13/1/311

    Google Scholar 

  12. McGuiness CD, Sagoo K, McLoskey D, Birch DJS (2004) A new sub-nanosecond LED at 280 nm: application to protein fluorescence. Meas Sci Technol 15:L19–L22. doi:10.1088/0957-0233/15/11/L02

    Google Scholar 

  13. McGuinness CD, Sagoo K, McLoskey D, Birch DJS (2005) Selective excitation of tryptophan fluorescence decay in proteins using a subnanosecond 295 nm light-emitting diode and time-correlated single-photon counting. Appl Phys Lett 86:261911. doi:10.1063/1.1984088

    Article  Google Scholar 

  14. Steiner R (1991) Fluorescence anisotropy: theory and applications. In: Lakowicz JR (ed) Topics of fluorescence spectroscopy, vol 2. Springer, New York, pp 1–51. doi:10.1007/0-306-47058-6_1

  15. Ibrahim IAM, Zikry AAF, Sharaf MA (2010) Preparation of spherical silica nanoparticles: stöber silica. J Amer Sci 6:985–989

    Google Scholar 

  16. LUDOX Colloidal Silica. Grace Davison Data Sheet September 2008. Reference ludox_broch_E_08

    Google Scholar 

  17. Karolin J, Geddes CD, Wynee K, Birch DJS (2002) Nanoparticle metrology in sol-gels using multiphoton excited fluorescence. Meas Sci Technol 13:21–27. doi:10.1088/0957-0233/13/1/303

    Google Scholar 

  18. Tleugabulova D, Duft AM, Brook MA, Brennan JD (2004) Monitoring solute interactions with poly(ethylene oxide)-modified colloidal silica nanoparticles via fluorescence anisotropy decay. Langmuir 20:101–108. doi:10.1021/la035333z

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the EPSRC and SFC for research support and SUPA, NPL, and Horiba Jobin Yvon IBH Ltd for a studentship held by PY.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Birch, D.J.S., Yip, P. (2014). Nanometrology. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics