Skip to main content

Mechanical Measurements on Living Plant Cells by Micro-indentation with Cellular Force Microscopy

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1080))

Abstract

Indentation methods on the micro- and nanoscale are increasingly used to assess mechanical properties of living plant tissues. These techniques rely on recording the force resulting from indenting the cell surface with a small probe. Depending on the scale of indentation and the indenter shape, force-indentation data will reflect several factors such as cell wall elasticity, turgor pressure, cell and tip geometry, and contact angle. Cellular force microscopy is a micro-indentation method that was designed to precisely measure and apply forces on living plant cells. Here we explain how to use this method to map the apparent stiffness in single cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  2. Burgert I (2006) Exploring the micromechanical design of plant cell walls. Am J Bot 93:1391–1401

    Article  PubMed  Google Scholar 

  3. Geitmann A (2006) Experimental approaches used to quantify physical parameters at cellular and subcellular levels. Am J Bot 93:1380–1390

    Article  PubMed  Google Scholar 

  4. Smith AE, Moxham KE, Middelberg APJ (1998) On uniquely determining cell-wall material properties with the compression experiment. Chem Eng Sci 53:3913–3922

    Article  CAS  Google Scholar 

  5. Smith AE, Moxham KE, Middelberg APJ (2000) Wall material properties of yeast cells. Part II. Analysis. Chem Eng Sci 55: 2043–2053

    Article  CAS  Google Scholar 

  6. Blewett J, Burrows K, Thomas C (2000) A micromanipulation method to measure the mechanical properties of single tomato suspension cells. Biotechnol Lett 22:1877–1883

    Article  CAS  Google Scholar 

  7. Wang CX, Wang L, Thomas CR (2004) Modelling the mechanical properties of single suspension cultured tomato cells. Ann Bot 93:443–453

    Article  PubMed  CAS  Google Scholar 

  8. Wang CX, Wang L, McQueen-Mason SJ et al (2008) pH and expansin action on single suspension-cultured tomato (Lycopersicon esculentum) cells. J Plant Res 121:527–534

    Article  PubMed  CAS  Google Scholar 

  9. Milani P, Gholamirad M, Traas J et al (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67: 1116–1123

    Article  PubMed  CAS  Google Scholar 

  10. Fernandes AN, Chen X, Scotchford CA et al (2012) Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: an atomic force microscopy study. Phys Rev E Stat Nonlin Soft Matter Phys 85:021916

    Article  PubMed  Google Scholar 

  11. Radotić K, Roduit C, Simonović J et al (2012) Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. Biophys J 103: 386–394

    Article  PubMed  Google Scholar 

  12. Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  PubMed  CAS  Google Scholar 

  13. Bolduc J-E, Lewis LJ, Aubin C-E et al (2006) Finite-element analysis of geometrical factors in micro-indentation of pollen tubes. Biomech Model Mechanobiol 5:227–236

    Article  PubMed  Google Scholar 

  14. Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446

    Article  PubMed  CAS  Google Scholar 

  15. Routier-Kierzkowska A-L, Weber A, Kochova P et al (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Phys 158:1514–1522

    Article  CAS  Google Scholar 

  16. Vogler H, Draeger C, Weber A et al (2013) The pollen tube: a soft shell with a hard core. Plant J. 73:617–627

    Google Scholar 

  17. Hayot CM, Forouzesh E, Goel A et al (2012) Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. J Exp Bot 63:2525–2540

    Article  PubMed  CAS  Google Scholar 

  18. Forouzesh E, Goel A, Mackenzie SA et al (2012) In vivo extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling. Plant J. doi:10.1111/tpj.12042

    PubMed  Google Scholar 

  19. Peaucelle A, Braybrook SA, Le Guillou L et al (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in arabidopsis. Curr Biol 21:1720–1726

    Article  PubMed  CAS  Google Scholar 

  20. Felekis D, Muntwyler S, Vogler H et al (2011) Quantifying growth mechanics of living, growing plant cells in situ using microbotics. Micro Nano Lett 6:311–316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all those involved in the development of the CFM, Dimitris Felikis, Simon Muntwyler, Felix Beyeler, Brad Nelson, Cris Kuhlemeier, and Michal Huflejt, as well as those who helped to perfect the protocol in the first experiments, Petra Kochova and Alain Weber. We thank Gabriella Mosca, Pierre Barbier de Reuille, and Sarah Robinson for discussions and Willi Tanner for custom machine work. This work was supported by SystemX.ch and the University of Bern.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Routier-Kierzkowska, AL., Smith, R.S. (2014). Mechanical Measurements on Living Plant Cells by Micro-indentation with Cellular Force Microscopy. In: Žárský, V., Cvrčková, F. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1080. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-643-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-643-6_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-642-9

  • Online ISBN: 978-1-62703-643-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics