Skip to main content

Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

  • Protocol
  • First Online:
Neuronal Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1078))

Abstract

The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease.

Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) assess virally induced injury/apoptosis, (4) characterize “CNS-specific” cytokine production, and (5) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hauser S (2006) Harrison’s neurology in clinical medicine. McGraw-Hill Companies, New York

    Google Scholar 

  2. Hilgetag CC, Barbas H (2009) Are there ten times more glia than neurons in the brain? Brain Struct Funct 213:365–366

    Article  PubMed  Google Scholar 

  3. Kandel E, Schwartz J, Jessel T (2000) Principles of neural science, 4th edn. McGraw-Hill Companies, New York

    Google Scholar 

  4. Harrison RG (1907) Observations on the living developing nerve fiber. Proc Soc Exp Biol Med 4:140–143

    Google Scholar 

  5. Geller HM (1976) Effects of some putative neurotransmitters on unit activity of tuberal hypothalamic neurons in vitro. Brain Res 108:423–430

    Article  PubMed  CAS  Google Scholar 

  6. Costero I, Pomerat C (1951) Cultivation of neurons from the adult human cerebral and cerebellar cortes. Am J Anat 89:405–467

    Article  PubMed  CAS  Google Scholar 

  7. Storts RW, Koestner A (1968) General cultural characteristics of canine cerebellar explants. Am J Vet Res 29:2351–2364

    PubMed  CAS  Google Scholar 

  8. Hogue M (1947) Human fetal brain cells in tissue cultures; their identification and motility. J Exp Zool 106:85–107

    Article  PubMed  CAS  Google Scholar 

  9. Gahwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342

    Article  PubMed  CAS  Google Scholar 

  10. Crain SM (1966) Development of “organotypic” bioelectric activities in central nervous tissues during maturation in culture. Int Rev Neurobiol 9:1–43

    Article  PubMed  CAS  Google Scholar 

  11. Cho S, Wood A, Bowlby MR (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5:19–33

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto N, Kurotani T, Toyama K (1989) Neural connections between the lateral geniculate nucleus and visual cortex in vitro. Science 245: 192–194

    Article  PubMed  CAS  Google Scholar 

  13. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    Article  PubMed  CAS  Google Scholar 

  14. Holopainen IE (2005) Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res 30:1521–1528

    Article  PubMed  CAS  Google Scholar 

  15. Zimmer J, Gahwiler BH (1984) Cellular and connective organization of slice cultures of the rat hippocampus and fascia dentata. J Comp Neurol 228:432–446

    Article  PubMed  CAS  Google Scholar 

  16. Collin C, Miyaguchi K, Segal M (1997) Dendritic spine density and LTP induction in cultured hippocampal slices. J Neurophysiol 77:1614–1623

    PubMed  CAS  Google Scholar 

  17. De Simoni A, Yu LM (2006) Preparation of organotypic hippocampal slice cultures: interface method. Nat Protoc 1:1439–1445

    Article  PubMed  Google Scholar 

  18. Gahwiler BH (1984) Development of the hippocampus in vitro: cell types, synapses and receptors. Neuroscience 11:751–760

    Article  PubMed  CAS  Google Scholar 

  19. Finley M, Fairman D, Liu D et al (2004) Functional validation of adult hippocampal organotypic cultures as an in vitro model of brain injury. Brain Res 1001:125–132

    Article  PubMed  CAS  Google Scholar 

  20. De Simoni A, Griesinger CB, Edwards FA (2003) Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J Physiol 550:135–147

    Article  PubMed  Google Scholar 

  21. Cho S, Liu D, Fairman D et al (2004) Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures. Neurochem Int 45: 117–127

    Article  PubMed  CAS  Google Scholar 

  22. Pringle AK, Sundstrom LE, Wilde GJ et al (1996) Brain-derived neurotrophic factor, but not neurotrophin-3, prevents ischaemia-induced neuronal cell death in organotypic rat hippocampal slice cultures. Neurosci Lett 211:203–206

    Article  PubMed  CAS  Google Scholar 

  23. Ray AM, Owen DE, Evans ML et al (2000) Caspase inhibitors are functionally neuroprotective against oxygen glucose deprivation induced CA1 death in rat organotypic hippocampal slices. Brain Res 867:62–69

    Article  PubMed  CAS  Google Scholar 

  24. Raineteau O, Rietschin L, Gradwohl G et al (2004) Neurogenesis in hippocampal slice cultures. Mol Cell Neurosci 26:241–250

    Article  PubMed  CAS  Google Scholar 

  25. Noraberg J, Poulsen FR, Blaabjerg M et al (2005) Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Curr Drug Targets CNS Neurol Disord 4:435–452

    Article  PubMed  CAS  Google Scholar 

  26. Morrison B III, Eberwine JH, Meaney DF et al (2000) Traumatic injury induces differential expression of cell death genes in organotypic brain slice cultures determined by complementary DNA array hybridization. Neuroscience 96:131–139

    Article  PubMed  CAS  Google Scholar 

  27. Adembri C, Bechi A, Meli E et al (2004) Erythropoietin attenuates post-traumatic injury in organotypic hippocampal slices. J Neurotrauma 21:1103–1112

    Article  PubMed  Google Scholar 

  28. Adamchik Y, Frantseva MV, Weisspapir M et al (2000) Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures. Brain Res Brain Res Protoc 5:153–158

    Article  PubMed  CAS  Google Scholar 

  29. Routbort MJ, Bausch SB, McNamara JO (1999) Seizures, cell death, and mossy fiber sprouting in kainic acid-treated organotypic hippocampal cultures. Neuroscience 94:755–765

    Article  PubMed  CAS  Google Scholar 

  30. Thompson SM (1993) Consequence of epileptic activity in vitro. Brain Pathol 3:413–419

    Article  PubMed  CAS  Google Scholar 

  31. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113

    Article  PubMed  CAS  Google Scholar 

  32. Lesne S, Koh MT, Kotilinek L et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  CAS  Google Scholar 

  33. Wang Q, Walsh DM, Rowan MJ et al (2004) Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 24:3370–3378

    Article  PubMed  CAS  Google Scholar 

  34. Shimizu K, Matsubara K, Ohtaki K et al (2003) Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture. Neurosci Res 46:523–532

    Article  PubMed  CAS  Google Scholar 

  35. Madsen JT, Jansen P, Hesslinger C et al (2003) Tetrahydrobiopterin precursor sepiapterin provides protection against neurotoxicity of 1-methyl-4-phenylpyridinium in nigral slice cultures. J Neurochem 85:214–223

    Article  PubMed  CAS  Google Scholar 

  36. Gianinazzi C, Grandgirard D, Simon F et al (2004) Apoptosis of hippocampal neurons in organotypic slice culture models: direct effect of bacteria revisited. J Neuropathol Exp Neurol 63:610–617

    Google Scholar 

  37. Stringaris AK, Geisenhainer J, Bergmann F et al (2002) Neurotoxicity of pneumolysin, a major pneumococcal virulence factor, involves calcium influx and depends on activation of p38 mitogen-activated protein kinase. Neurobiol Dis 11:355–368

    Article  PubMed  CAS  Google Scholar 

  38. Scheidegger A, Vonlaufen N, Naguleswaran A et al (2005) Differential effects of interferon-gamma and tumor necrosis factor-alpha on Toxoplasma gondii proliferation in organotypic rat brain slice cultures. J Parasitol 91:307–315

    Article  PubMed  CAS  Google Scholar 

  39. Gianinazzi C, Schild M, Muller N et al (2005) Organotypic slice cultures from rat brain tissue: a new approach for Naegleria fowleri CNS infection in vitro. Parasitology 131:797–804

    Article  PubMed  CAS  Google Scholar 

  40. Dionne KR, Leser JS, Lorenzen KA et al (2011) A brain slice culture model of viral encephalitis reveals an innate CNS cytokine response profile and the therapeutic potential of caspase inhibition. Exp Neurol 228: 222–231

    Article  PubMed  CAS  Google Scholar 

  41. Braun E, Zimmerman T, Ben Hur T et al (2006) Neurotropism of herpes simplex virus type 1 in brain organ cultures. J Gen Virol 87:2827–2837

    Article  PubMed  CAS  Google Scholar 

  42. Mayer D, Fischer H, Schneider U et al (2005) Borna disease virus replication in organotypic hippocampal slice cultures from rats results in selective damage of dentate granule cells. J Virol 79:11716–11723

    Article  PubMed  CAS  Google Scholar 

  43. Tsutsui Y, Kawasaki H, Kosugi I (2002) Reactivation of latent cytomegalovirus infection in mouse brain cells detected after transfer to brain slice cultures. J Virol 76:7247–7254

    Article  PubMed  CAS  Google Scholar 

  44. Chen SF, Huang CC, Wu HM et al (2004) Seizure, neuron loss, and mossy fiber sprouting in herpes simplex virus type 1-infected organotypic hippocampal cultures. Epilepsia 45:322–332

    Article  PubMed  Google Scholar 

  45. Friedl G, Hofer M, Auber B et al (2004) Borna disease virus multiplication in mouse organotypic slice cultures is site-specifically inhibited by gamma interferon but not by interleukin-12. J Virol 78:1212–1218

    Article  PubMed  CAS  Google Scholar 

  46. Sundstrom L, Morrison B III, Bradley M et al (2005) Organotypic cultures as tools for functional screening in the CNS. Drug Discov Today 10:993–1000

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by RO1NS076512 (KLT), R21AI01064 (KLT), VA Merit Grant BX000963 (KLT), T32GM008497 (KRD), and F30NS071630 (KRD).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dionne, K.R., Tyler, K.L. (2013). Slice Culture Modeling of Central Nervous System (CNS) Viral Infection. In: Amini, S., White, M. (eds) Neuronal Cell Culture. Methods in Molecular Biology, vol 1078. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-640-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-640-5_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-639-9

  • Online ISBN: 978-1-62703-640-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics