Skip to main content

Plant Proteomics Methods to Reach Low-Abundance Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1072))

Abstract

The question of low-abundance proteins from biological tissues is still a major issue. Technologies have been devised to improve the situation and in the last few years a method based on solid-phase combinatorial peptide ligand libraries has been extensively applied to animal extracts. This method has also been extended to plant extracts taking advantage of findings from previous experience. Detailed methods are described and their pertinence highlighted according to various situations of plant sample origin, size of the sample, and analytical methods intended to be used for protein identifications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

CPLL:

Combinatorial peptide ligand library

TUC:

Thiourea–urea-CHAPS

References

  1. Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S et al (2009) Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfil MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    Article  PubMed  Google Scholar 

  2. Agrawal GK, Rakwal R (2008) Plant proteomics: technologies, strategies, applications. Wiley, Hoboken

    Book  Google Scholar 

  3. Agrawal GK, Job D, Zivy M et al (2011) Time to articulate a vision for the future of plant proteomics—a global perspective: an initiative for establishing the international plant proteomics. Proteomics 11:1559–1568

    Article  PubMed  CAS  Google Scholar 

  4. Rose JK, Bashir S, Giovannoni JJ et al (2008) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  Google Scholar 

  5. Jamet E, Albenne C, Boudart G et al (2008) Recent advances in plant cell wall proteomics. Proteomics 8:893–908

    Article  PubMed  CAS  Google Scholar 

  6. Millar DJ, Whitelegge JP, Bindschedler LV et al (2009) The cell wall and secretory proteome of a tobacco cell line synthesising a secondary wall. Proteomics 9:2355–2372

    Article  PubMed  CAS  Google Scholar 

  7. Demirevska-Kepova K, Simova-Stoilova L, Kjurkchiev S et al (1999) Barley leaf rubisco, rubisco binding protein and rubisco activase and their protein/protein interactions. Bulg J Plant Physiol 25:31–44

    CAS  Google Scholar 

  8. Li G, Nallamilli BR, Tan F et al (2008) Removal of high-abundance proteins for nuclear subproteome studies in rice (Oryza sativa) endosperm. Electrophoresis 29:604–617

    Article  PubMed  CAS  Google Scholar 

  9. Carpentier SC, Panis B, Vertommen A et al (2008) Proteome analysis for non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27:354–377

    Article  PubMed  CAS  Google Scholar 

  10. Méchin V, Damerval C, Zivy M (2007) Total protein extraction with TCA-acetone. Methods Mol Biol 355:1–8

    Article  PubMed  Google Scholar 

  11. Faurobert M, Pelpoir E, Chaïb J (2007) Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods Mol Biol 355:9–14

    PubMed  CAS  Google Scholar 

  12. Wessel D, Flugge UI (1984) A method for the quantitative recovery of proteins in dilute solutions in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

  13. Isaacson T, Damasceno CM, Saravanan RS et al (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774

    Article  PubMed  CAS  Google Scholar 

  14. Krishnan HB, Natarajan SS (2009) A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins. Phytochemistry 70:1958–1964

    Article  PubMed  CAS  Google Scholar 

  15. Widjaja I, Naumann K, Roth U et al (2009) Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense. Proteomics 9:138–147

    Article  PubMed  CAS  Google Scholar 

  16. Cellar NA, Kuppannan K, Langhorst ML et al (2008) Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. J Chromatogr A 861:29–39

    CAS  Google Scholar 

  17. Ni RJ, Shen Z, Yang CP et al (2010) Identification of low abundance polyA-binding proteins in Arabidopsis chloroplast using polyA-affinity column. Mol Biol Rep 37:637–641

    Article  PubMed  CAS  Google Scholar 

  18. Xu Y, Wang BC, Zhu YX (2007) Identification of proteins expressed at extremely low level in Arabidopsis leaves. Biochem Biophys Res Commun 358:808–812

    Article  PubMed  CAS  Google Scholar 

  19. Kwon SJ, Choi EY, Seo JB et al (2007) Isolation of the Arabidopsis phosphoproteome using a biotin-tagging approach. Mol Cells 24:268–275

    PubMed  CAS  Google Scholar 

  20. Fasoli E, Pastorello EA, Farioli L et al (2009) Searching for allergens in maize kernels via proteomic tools. J Proteomics 72:501–510

    Article  PubMed  CAS  Google Scholar 

  21. Fasoli E, Aldini A, Regazzoni L et al (2010) Les maîtres de l’orge: the proteome content of your beer mug. J Proteome Res 9:5262–5269

    Article  PubMed  CAS  Google Scholar 

  22. Fröhlich A, Lindermayr C (2011) Deep insights into the plant proteome by pretreatment with combinatorial hexapepeptide library. J Proteomics 74:1182–1189

    Article  PubMed  Google Scholar 

  23. D’Amato A, Bachi A, Fasoli E et al (2010) In-depth exploration of Hevea brasiliensis latex proteome and “hidden allergens” via combinatorial peptide ligand libraries. J Proteomics 73:1368–1380

    Article  PubMed  Google Scholar 

  24. Cereda A, Kravchuk AV, D’Amato A et al (2010) Proteomics of wine additives: mining for the invisible via combinatorial peptide ligand libraries. J Proteomics 73:1732–1739

    Article  PubMed  CAS  Google Scholar 

  25. Cereda A, Kravchuk AV, D’Amato A et al (2010) Noah’s nectar: the proteome content of a glass of red wine. J Proteomics 73:2370–2377

    Article  Google Scholar 

  26. Guerrier L, Thulasiraman V, Castagna A et al (2006) Reducing protein concentration range of biological samples using solid-phase ligand libraries. J Chromatogr B 833:33–40

    Article  CAS  Google Scholar 

  27. Sennels L, Salek M, Lomas L et al (2007) Proteomic analysis of human blood serum using peptide library beads. J Proteome Res 6:4055–4062

    Article  PubMed  CAS  Google Scholar 

  28. Roux-Dalvai F, Gonzalez de Peredo A, Simó C et al (2008) Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol Cell Proteomics 7:2254–2269

    Article  PubMed  CAS  Google Scholar 

  29. Boschetti E, Bindschedler L, Tang C et al (2009) Combinatorial peptide ligand libraries and plant proteomics: a winning strategy at a price. J Chromatogr A 1216:1215–1222

    Article  PubMed  CAS  Google Scholar 

  30. Mouton-Barbosa E, Roux-Dalvai F, Bouyssié D et al (2010) In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Mol Cell Proteomics 9:1006–1021

    Article  PubMed  CAS  Google Scholar 

  31. Thulasiraman V, Lin S, Gheorghiu L et al (2005) Reduction of concentration difference of proteins from biological liquids using combinatorial ligands. Electrophoresis 26:3561–3571

    Article  PubMed  CAS  Google Scholar 

  32. Righetti PG, Boschetti E, Kravchuk A et al (2010) The proteome buccaneers: how to unearth your treasure chest via combinatorial peptide ligand libraries. Exp Rev Proteomics 73:73–385

    Google Scholar 

  33. Righetti PG, Boschetti E (2011) Combinatorial peptide ligand libraries: the conquest of the “hidden proteome” advances at great strides. Electrophoresis 32:960–966

    Article  PubMed  CAS  Google Scholar 

  34. Candiano G, Dimuccio V, Bruschi M et al (2009) Combinatorial peptide ligand libraries for urine proteome analysis: investigation of different elution systems. Electrophoresis 30:2405–2411

    Article  PubMed  CAS  Google Scholar 

  35. Righetti PG, Boschetti E, Zanella A et al (2010) Plucking, pillaging and plundering proteomes with combinatorial peptide ligand libraries. J Chromatogr A 1217:893–900

    Article  PubMed  CAS  Google Scholar 

  36. Fonslow BR, Carvalho PC, Academia K et al (2011) Improvements in proteomic metrics of low abundance proteins through proteome equalization using ProteoMiner prior to MudPIT. J Proteome Res 10:3690–3700

    Article  PubMed  CAS  Google Scholar 

  37. McCabe MS, Garratt LC, Schepers F et al (2001) Effects of P(SAG12)-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–616

    Article  PubMed  CAS  Google Scholar 

  38. Gengenheimer P (1992) Preparation of extracts from plants. Methods Enzymol 182:174–193

    Article  Google Scholar 

  39. Fasoli E, Farinazzo A, Sun CJ et al (2010) Interaction among proteins and peptide libraries in proteome analysis: pH involvement for a larger capture of species. J Proteomics 73:733–742

    Article  PubMed  CAS  Google Scholar 

  40. Farinazzo A, Fasoli E, Kravchuk AV et al (2009) En bloc elution of proteomes from combinatorial peptide ligand libraries. J Proteomics 72:725–730

    Article  PubMed  CAS  Google Scholar 

  41. Fasoli E, D’Amato A, Kravchuk AV et al (2011) Popeye strikes again: the deep proteome of spinach leaves. J Proteomics 74:127–136

    Article  PubMed  CAS  Google Scholar 

  42. Shahali Y, Boschetti E, D’Amato A et al (2012) Allergomic study of cypress pollen via combinatorial peptide ligand libraries. J Proteomics 77:101–110

    Article  PubMed  CAS  Google Scholar 

  43. D’Amato A, Fasoli E, Kravchuk AV et al (2011) Mehercules, adhuc bacchus! The debate on wine proteomics continues. J Proteome Res 10:3789–3801

    Article  PubMed  Google Scholar 

  44. Peck SC (2005) Update on proteomics in Arabidopsis. Where do we go from here? Plant Physiol 138:591–599

    Article  PubMed  CAS  Google Scholar 

  45. Esteve C, D’Amato A, Marina ML et al (2012) Identification of avocado (Persea americana) pulp proteins by nanoLC-MS/MS via combinational peptide ligand libraries. Electrophoresis 33:2799–2805

    Article  PubMed  CAS  Google Scholar 

  46. Esteve C, D’Amato A, Marina ML et al (2013) In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries. Electrophoresis 34(2):207–214

    Article  PubMed  CAS  Google Scholar 

  47. Esteve C, D’Amato A, Marina ML et al (2012) Identification of olive (Olea europaea) seed and pulp proteins by nLC-MS/MS via combinatorial peptide ligand libraries. J Proteomics 75:2396–2403

    Article  PubMed  CAS  Google Scholar 

  48. Boschetti E, Righetti PG (2013) Low-abundance protein discovery: State of the art and protocols. Elsevier, pp 1–375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boschetti, E., Righetti, P.G. (2014). Plant Proteomics Methods to Reach Low-Abundance Proteins. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics