Skip to main content

Plant Proteomics: From Genome Sequencing to Proteome Databases and Repositories

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1072))

Abstract

Proteomic approaches are useful for the identification of functional proteins. These have been enhanced not only by the development of proteomic techniques but also in concert with genome sequencing. In this chapter, 30 databases and Web sites relating to plant proteomics are reviewed and recent technologies relating to data collection and annotation are surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EST:

Expressed sequence tag

MS:

Mass spectrometry

n-DE:

n-Dimensional electrophoresis

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Komatsu S, Konishi H, Shen S et al (2003) Rice proteomics: a step toward functional analysis of the rice genome. Mol Cell Proteomics 2:2–10

    Article  PubMed  CAS  Google Scholar 

  2. Komatsu S, Yano H (2006) Update and challenges on proteomics in rice. Proteomics 6:4057–4068

    Article  PubMed  CAS  Google Scholar 

  3. Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7:2976–2996

    Article  PubMed  CAS  Google Scholar 

  4. Komatsu S, Ahsan N (2009) Soybean proteomics and its application to functional analysis. J Proteomics 72:325–336

    Article  PubMed  CAS  Google Scholar 

  5. Plant genomes central: genome projects in progress. http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html. Accessed 10 Feb 2012

  6. The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  7. Baerenfaller K, Grossmann J, Grobei MA et al (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–941

    Article  PubMed  CAS  Google Scholar 

  8. Hummel J, Niemann M, Wienkoop S et al (2007) ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites. BMC Bioinformatics 8:216

    Article  PubMed  Google Scholar 

  9. Heazlewood JL, Verboom RE, Tonti-Filippini J et al (2006) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35:D213–D218

    Article  PubMed  Google Scholar 

  10. Komatsu S, Kojima K, Suzuki K et al (2004) Rice Proteome Database based on two-dimensional polyacrylamide gel electrophoresis: its status in 2003. Nucleic Acids Res 32:D388–D392

    Article  PubMed  CAS  Google Scholar 

  11. Helmy M, Tomita M, Ishihama Y (2011) OryzaPG-DB: rice proteome database based on shotgun proteogenomics. BMC Plant Biol 11:63

    Article  PubMed  CAS  Google Scholar 

  12. Friso G, Giacomelli L, Ytterberg AJ et al (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499

    Article  PubMed  CAS  Google Scholar 

  13. Sun Q, Zybailov B, Majeran W et al (2008) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–D974

    Article  PubMed  Google Scholar 

  14. Hajduch M, Ganapathy A, Stein JW et al (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  PubMed  CAS  Google Scholar 

  15. Sakata K, Ohyanagi H, Nobori H et al (2009) Soybean Proteome Database: a data resource for plant differential omics. J Proteome Res 8:3539–3548

    Article  PubMed  CAS  Google Scholar 

  16. Kleffmann T, Hirsch-Hoffmann M, Gruissem W et al (2006) plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47:432–436

    Article  PubMed  CAS  Google Scholar 

  17. Cui J, Li P, Li G et al (2008) AtPID: Arabidopsis thaliana protein interactome database: an integrative platform for plant systems biology. Nucleic Acids Res 36:D999–D1008

    Article  PubMed  CAS  Google Scholar 

  18. Sapkota A, Liu X, Zhao X-M et al (2011) DIPOS: database of interacting proteins in Oryza sativa. Mol Biosyst 7:2615–2621

    Article  PubMed  CAS  Google Scholar 

  19. Gu H, Zhu P, Jiao Y et al (2011) PRIN: a predicted rice interactome network. BMC Bioinformatics 12(1):161

    Article  PubMed  Google Scholar 

  20. Joshi T, Patil K, Fitzpatrick MR et al (2012) Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genomics 13(Suppl 1):S15

    Article  PubMed  CAS  Google Scholar 

  21. Senkler M, Braun H-P (2012) Functional annotation of 2D protein maps: the GelMap portal. Front Plant Sci 3:87

    Article  PubMed  Google Scholar 

  22. Wu Z-C, Xiao X, Chou K-C (2011) iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mol Biosyst 7:3287–3297

    Article  PubMed  CAS  Google Scholar 

  23. Fan J, Mohareb F, Jones AME et al (2012) MRMaid: the SRM assay design tool for Arabidopsis and other species. Front Plant Sci 3:164

    Article  PubMed  Google Scholar 

  24. Yao Q, Gao J, Bollinger C et al (2012) Predicting and analyzing protein phosphorylation sites in plants using Musite. Front Plant Sci 3:186

    PubMed  Google Scholar 

  25. Farrah T, Deutsch EW, Kreisberg R et al (2012) PASSEL: the PeptideAtlas SRM experiment library. Proteomics 12:1170–1175

    Article  PubMed  CAS  Google Scholar 

  26. Reumann S, Buchwald D, Lingner T (2012) PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins. Front Plant Sci 3:194

    Article  PubMed  Google Scholar 

  27. Medina-Aunon JA, Martinez-Bartolome S, Lopez-Garcia MA (2011) The ProteoRed MIAPE web toolkit: a user-friendly framework to connect and share proteomics standards. Mol Cell Proteomics 10:M111.008334

    Article  PubMed  Google Scholar 

  28. Martens L, Hermjakob H, Jones P et al (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545

    Article  PubMed  CAS  Google Scholar 

  29. Orchard S (2012) Molecular interaction databases. Proteomics 12:1656–1662

    Article  PubMed  CAS  Google Scholar 

  30. Wijk KJ (2001) Challenges and prospects of plant proteomics. Plant Physiol 126:501–508

    Article  PubMed  Google Scholar 

  31. Gupta N, Tanner S, Jaitly N et al (2007) Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res 17:1362–1377

    Article  PubMed  CAS  Google Scholar 

  32. Ansong C, Purvine SO, Adkins JN et al (2008) Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Brief Funct Genomic Proteomic 7:50–62

    Article  PubMed  CAS  Google Scholar 

  33. Jaffe JD, Berg HC, Church GM (2004) Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4:59–77

    Article  PubMed  CAS  Google Scholar 

  34. Gupta N, Benhamida J, Bhargava V et al (2008) Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Res 18:1133–1142

    Article  PubMed  CAS  Google Scholar 

  35. Proteogenomics. http://en.wikipedia.org/wiki/Proteogenomics

  36. Castellana NE, Payne SH, Shen Z et al (2008) Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A 105:21034–21038

    Article  PubMed  CAS  Google Scholar 

  37. Ferro M, Brugiere S, Salvi D et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084

    Article  PubMed  CAS  Google Scholar 

  38. Barrell D, Dimme E, Huntle RP et al (2009) The GOA database in 2009-an integrated gene ontology annotation resource. Nucleic Acids Res 37:D396–D403

    Article  PubMed  CAS  Google Scholar 

  39. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  PubMed  CAS  Google Scholar 

  40. Hirsch-Hoffmann M, Gruissem W, Baerenfaller K (2012) pep2pro: the high-throughput proteomics data processing, analysis, and visualization tool. Front. Plant Sci 3:123

    Google Scholar 

  41. Heazlewood JL, Durek P, Hummel J et al (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021

    Article  PubMed  CAS  Google Scholar 

  42. Weckwerth W, Baginsky S, Wijk KV (2008) The multinational Arabidopsis steering subcommittee for proteomics assembles the largest proteome database resource for plant systems biology. J Proteome Res 7:4209–4210

    Article  PubMed  CAS  Google Scholar 

  43. Lamesch P, Berardini TZ, Li D et al (2011) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(D1):D1202-D1210. doi:10.1093/nar/gkr1090

  44. Walhout AJ, Sordella R, Lu X et al (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122

    Article  PubMed  CAS  Google Scholar 

  45. Ohyanagi H, Tanaka T, Sakai H et al (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 34:D741–D744

    Article  PubMed  CAS  Google Scholar 

  46. Doroshenk KA, Crofts AJ, Morris RT et al (2012) RiceRBP: a resource for experimentally identified RNA binding proteins in Oryza sativa. Front Plant Sci 3:90

    Article  PubMed  Google Scholar 

  47. Usadel B, Schwacke R, Nagel A et al (2012) GabiPD: the GABI Primary Database integrates plant proteomic data with gene-centric information. Front Plant Sci 3:154

    Article  PubMed  Google Scholar 

  48. Rose CM, Venkateshwaran M, Grimsrud PA et al (2012) Medicago PhosphoProtein Database: a repository for Medicago truncatula phosphoprotein data. Front Plant Sci 3:122

    PubMed  Google Scholar 

  49. Yao Q, Bollinger C, Gao J et al (2012) P3DB: an integrated database for plant protein phosphorylation. Front Plant Sci 3:206

    PubMed  Google Scholar 

  50. Wolski W, Lalowski M, Martus P et al (2005) Transformation and other factors of the peptide mass spectrometry pairwise peak-list comparison process. BMC Bioinformatics 6:285

    Article  PubMed  Google Scholar 

  51. Galland M, Job D, Rajjou L (2012) The seed proteome web portal. Front Plant Sci 3:98

    Article  PubMed  Google Scholar 

  52. Mostaguir K, Hoogland C, Binz P-A et al (2003) The Make 2D-DB II package: conversion of federated two-dimensional gel electrophoresis databases into a relational format and interconnection of distributed databases. Proteomics 3:1441–1444

    Article  PubMed  CAS  Google Scholar 

  53. Joshi T, Yao Q, Franklin LD et al (2010) SoyMetDB: the soybean metabolome database. Proceedings of IEEE International Conference on Bioinformatics & Biomedicine (BIBM 2010), Hong Kong, pp 203–208

    Google Scholar 

  54. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  55. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  56. Komatsu S, Wada T, Abaléa Y et al (2009) Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 8:4487–4499

    Article  PubMed  CAS  Google Scholar 

  57. Nouri M-Z, Komatsu S (2010) Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Proteomics 10:1930–1945

    Article  PubMed  CAS  Google Scholar 

  58. Griss J, Cote RG, Gerner C et al (2011) Published and perished? The influence of the searched protein database on the long-term storage of proteomics data. Mol Cell Proteomics 10:M111.008490

    Article  PubMed  Google Scholar 

  59. Foster JM, Degroeve S, Gatto L et al (2011) A posteriori quality control for the curation and reuse of public proteomics data. Proteomics 11:2182–2194

    Article  PubMed  CAS  Google Scholar 

  60. Wienkoop S, Staudinger C, Hoehenwarter W et al (2012) ProMEX: a mass spectral reference database for plant proteomics. Front Plant Sci 3:125

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sakata, K., Komatsu, S. (2014). Plant Proteomics: From Genome Sequencing to Proteome Databases and Repositories. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics